FDA Approves Penn Pioneered CAR T Cell Therapy for Third Indication

The U.S. Food and Drug Administration has expanded its approval for Kymriah, a personalized cellular therapy developed at the Abramson Cancer Center, this time for the treatment of adults with relapsed/refractory follicular lymphoma who have received at least two lines of systemic therapy. “Patients with follicular lymphoma who relapse or don’t respond to treatment have a poor prognosis and may face a series of treatment options without a meaningful, lasting response,” said Stephen J. Schuster, the Robert and Margarita Louis-Dreyfus Professor in Chronic Lymphocytic Leukemia and Lymphoma in the Division of Hematology Oncology. It’s the third FDA approval for the “living drug,” which was the first of its kind to be approved, in 2017, and remains the only CAR T cell therapy approved for both adult and pediatric patients.

“In just over a decade, we have moved from treating the very first patients with CAR T cell therapy and seeing them live healthy lives beyond cancer to having three FDA-approved uses of these living drugs which have helped thousands of patients across the globe,” said Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in Penn’s Perelman School of Medicine and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center and director of the Parker Institute for Cancer Immunotherapy at Penn. “Today’s news is new fuel for our work to define the future of cell therapy and set new standards in harnessing the immune system to treat cancer.”

Research from June, a member of the Penn Bioengineering Graduate Group, led to the initial FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Read the full announcement in Penn Medicine News.

César de la Fuente Receives 2022 RSEQ Young Investigator Award

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and in Chemical and Biomolecular Engineering has been honored with a 2022 Young Investigator Award by the Royal Spanish Society of Chemistry (RSEQ) for his pioneering research efforts to combine the power of machines and biology to help prevent, detect, and treat infectious diseases.

Read the RSEQ’s announcement here.

This story originally appeared in Penn Medicine News’s Awards & Accolades post for April 2022.

 

2022 Graduate Research Fellowships for Bioengineering Students

Congratulations to the two Bioengineering students to receive 2022 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The eighteen Penn 2022 honorees were selected from a highly-competitive pool of over 12,000 applications nationwide. Further information about the program can be found on the NSF website.

 Gianna Therese Busch, PhD student, Bioengineering
Gianna is a member of the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics. Her research focuses on single-cell differences in cancer metabolism and drug resistance.

 

 

 

Shawn Kang, BSE/MSE, Bioengineering (’22)
Shawn conducted research in the BIOLines Lab of Dan Huh, Associate Professor in Bioengineering, where he worked to develop more physiologically relevant models of human health and disease by combining organs-on-a-chip and organoid technology.

 

 

 

The following Bioengineering students also received Honorable Mentions:
Michael Steven DiStefano, PhD student
Rohan Dipak Patel, PhD student
Abraham Joseph Waldman, PhD student

Read the full list of NSF GRFP Honorees on the Grad Center at Penn website.

Moving Away From ‘Average,’ Toward the Individual

by Michele W. Berger

In a course from Annenberg’s David Lydon-Staley, seven graduate students conducted single-participant experiments. This approach, what’s known as an “n of 1,” may better capture the nuances of a diverse population than randomized control trials can.

David Lydon-Staley is an assistant professor of communication and principal investigator of the Addiction, Health, & Adolescence Lab in the Annenberg School for Communication.

To prep for an upcoming course he was teaching, Penn researcher David Lydon-Staley decided to conduct an experiment: Might melatonin gummies—supplements touted to improve sleep—help him, as an individual, fall asleep faster?

For two weeks, he took two gummies on intervention nights and none on control nights. The point, however, wasn’t really to find out whether the gummies worked for him (which they didn’t), but rather to see how an experiment with a single participant played out, what’s known as an “n of 1.”

Randomized control experiments typically include hundreds or thousands of participants. Their aim is to show, on average, how the intervention being studied affects people in the treatment group. But often “there’s a failure to include women and members of minoritized racial and ethnic groups in those clinical trials,” says Lydon-Staley, an assistant professor in the Annenberg School for Communication. “The single-case approach says, instead of randomizing a lot of people, we’re going to take one person at a time and measure them intensively.”

In Lydon-Staley’s spring semester class, Diversity and the End of Average, seven graduate students conducted their own n-of-1 experiments—on themselves—testing whether dynamic stretching might improve basketball performance or whether yoga might decrease stress. One wanted to understand the effect of journaling on emotional clarity. They also learned about representation in science, plus which analytical approaches might best capture the nuance of a diverse population and individuals with many intersecting identities.

“It’s not just an ‘n of 1’ trying to do what the big studies are doing. It’s a different perspective,” says Lydon-Staley. “Though it’s just one person, you’re getting a much more thorough characterization of how they’re changing from moment to moment.”

Read the full story in Penn Today.

David Lydon-Staley is an Assistant Professor of communication and principal investigator of the Addiction, Health, & Adolescence Lab in the Annenberg School for Communication at the University of Pennsylvania. Lydon-Staley is a former postdoctoral research in the Complex Systems Lab of Dani S. Bassett, J. Peter Skirkanich Professor in Bioengineering and in Electrical and Systems Engineering.

Erin Berlew and Rhea Chitalia Receive Solomon R. Pollack Awards for Excellence in Graduate Bioengineering Research

The Solomon R. Pollack Award for Excellence in Graduate Bioengineering Research is given annually to the most deserving Bioengineering graduate students who have successfully completed research that is original and recognized as being at the forefront of their field. This year Penn Bioengineering recognizes the outstanding work of two graduate students in Bioengineering: Erin Berlew and Rhea Chitalia.

Erin Berlew, Ph.D. candidate in Bioengineering

Erin Berlew is a Ph.D. candidate in the lab of Brian Chow, Associate Professor in Bioengineering. She successfully defended her thesis, titled “Single-component optogenetic tools for cytoskeletal rearrangements,” in December 2021. In her research, she used the BcLOV4 optogenetic platform discovered/developed in the Chow lab to control RhoGTPase signaling. Erin earned a B.S. in Chemistry from Haverford College in 2015 and was an Americorps member with City Year Philadelphia from 2015-2016. “Erin is a world-class bioengineering with an uncommon record of productivity gained through her complementary expertise in molecular, cellular, and computational biology,” says Chow. “She embodies everything wonderful, both academically and culturally, about our graduate program and its distinguished history.” Erin’s hobbies outside the lab include spending time with family, reading mystery novels, enjoying Philadelphia, and crossword puzzles. In the future, she hopes to continue to teach for the BE department (she has already taught ENGR 105 and served as a TA for undergraduate and graduate courses) and to conduct further research at Penn.

Rhea Chitalia, Ph.D. candidate in Bioengineering

Rhea Chitalia is a Ph.D. candidate in Bioengineering and a member of the Computational Biomarker Imaging Group (CBIG), advised by Despina Kontos, Matthew J. Wilson Associate Professor of Research Radiology II in the Perelman School of Medicine. Rhea completed her B.S.E. in Biomedical Engineering at Duke University in 2015. Her doctoral research concerns leveraging machine learning, bioinformatics, and computer vision to develop computational imaging biomarkers for improved precision cancer care. In December 2021 she successfully defended her thesis titled “Computational imaging biomarkers for precision medicine: characterizing intratumor heterogeneity in breast cancer.” “It has been such a privilege to mentor Rhea on her dissertation research,” says Kontos. “Rhea has been a star graduate student. Her work has made fundamental contributions in developing computational methods that will allow us to gain important insight into tumor heterogeneity by utilizing a multi-modality imaging approach.” David Mankoff, Matthew J. Wilson Professor of Research Radiology in the Perelman School of Medicine, served as Rhea’s second thesis advisor. “It was a true pleasure for me to work with Rhea and to Chair her BE Thesis Committee,” Mankoff adds. “Rhea’s Ph.D. thesis and thesis presentation was one of the best I have had the chance to be involved with in my graduate mentoring career.” After graduation, Rhea hopes to further precision medicine initiatives through the use of real world, multi-omic data in translational industry settings. She will be joining Invicro as an Imaging Scientist. In her spare time, Rhea enjoys trying new restaurants, reading, and spending time with friends and family.

 

Decoding a Material’s ‘Memory’

by Erica K. Brockmeier

A suspension of particles of different sizes during shearing experiments conducted in the lab of Paulo Arratia, with arrows indicating particle “flow” and trajectories. In a new study published in Nature Physics, researchers detail the relationship between a disordered material’s individual particle arrangement and how it reacts to external stressors. The study also found that these materials have “memory” that can be used to predict how and when they will flow. (Image: Arratia lab)

New research published in Nature Physics details the relationship between a disordered material’s individual particle arrangement and how it reacts to external stressors. The study also found that these materials have “memory” that can be used to predict how and when they will flow. The study was led by Larry Galloway, a Ph.D. student in the lab of Paulo Arratia, and Xiaoguang Ma, a former postdoc in the lab of Arjun Yodh, in collaboration with researchers in the labs of Douglas Jerolmack and Celia Reina.

A disordered material is randomly arranged at the particle-scale, e.g. atoms or grains, instead of being systematically distributed—think of a pile of sand instead of a neatly stacked brick wall. Researchers in the Arratia lab are studying this class of materials as part of Penn’s Materials Research Science & Engineering Center, where one of the program’s focuses is on understanding the organization and proliferation of particle-scale rearrangements in disordered, amorphous materials.

The key question in this study was whether one could observe the structure of a disordered material and have some indication as to how stable it is or when it might begin to break apart. This is known as the yield point, or when the material “flows” and begins to move in response to external forces. “For example, if you look at the grains of a sand castle and how they are arranged, can I tell you whether the wind can blow it over or if it has to be hit hard to fall over?” says Arratia. “We want to know, just by looking at the way the particles are arranged, if we can say anything about the way they’re going to flow or if they are going to flow at all.”

While it has been known that individual particle distribution influences yield point, or flow, in disordered materials, it has been challenging to study this phenomenon since the field lacks ways to “quantify” disorder in such materials. To address this challenge, the researchers collaborated with colleagues from across campus to combine expertise across the fields of experimentation, theory, and simulations.

Read the full story in Penn Today.

The authors are Larry Galloway, Erin Teich, Christoph Kammer, Ian Graham, Celia Reina, Douglas Jerolmack, Arjun Yodh, and Paulo Arratia from Penn; Xiaoguang Ma, previously a postdoc at Penn and now at the Southern University of Science and Technology in Shenzhen, China; and Nathan Keim, previously a postdoc at Penn and now at Pennsylvania State University.

Arjun Yodh is the James M. Skinner Professor of Science in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences and a member of the Penn Bioengineering Graduate Group.

Paulo Arratia is a professor in the departments of Mechanical Engineering and Applied Mechanics and Chemical and Biomolecular Engineering in the School of Engineering and Applied Science at the University of Pennsylvania.

Douglas Jerolmack is a professor in the Department of Earth and Environmental Science in Penn’s School of Arts & Sciences and in the Department of Mechanical Engineering and Applied Mechanics at Penn Engineering.

Celia Reina is the William K. Gemmill Term Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics at Penn Engineering.

Konrad Kording Appointed Co-Director the CIFAR Learning in Machines & Brains Program

Konrad Kording, PhD (Photo by Eric Sucar)

Konrad Kording, Nathan Francis Mossell University Professor in Bioengineering, Neuroscience, and Computer and Information Sciences, was appointed the Co-Director of the CIFAR Program in Learning in Machines & Brains. The appointment will start April 1, 2022.

CIFAR is a global research organization that convenes extraordinary minds to address the most important questions facing science and humanity. CIFAR was founded in 1982 and now includes over 400 interdisciplinary fellows and scholars, representing over 130 institutions and 22 countries. CIFAR supports research at all levels of development in areas ranging from Artificial Intelligence and child and brain development, to astrophysics and quantum computing. The program in Learning in Machines & Brains brings together international scientists to examine “how artificial neural networks could be inspired by the human brain, and developing the powerful technique of deep learning.” Scientists, industry experts, and policymakers in the program are working to understand the computational and mathematical principles behind learning, whether in brains or in machines, in order to understand human intelligence and improve the engineering of machine learning. As Co-Director, Kording will oversee the collective intellectual development of the LMB program which includes over 30 Fellows, Advisors, and Global Scholars. The program is also co-directed by Yoshua Benigo, the Canada CIFAR AI Chair and Professor in Computer Science and Operations Research at Université de Montréal.

Kording, a Penn Integrates Knowledge (PIK) Professor, was previously named an associate fellow of CIFAR in 2017. Kording’s groundbreaking interdisciplinary research uses data science to advance a broad range of topics that include understanding brain function, improving personalized medicine, collaborating with clinicians to diagnose diseases based on mobile phone data and even understanding the careers of professors. Across many areas of biomedical research, his group analyzes large datasets to test new models and thus get closer to an understanding of complex problems in bioengineering, neuroscience and beyond.

Visit Kording’s lab website and CIFAR profile page to learn more about his work in neuroscience, data science, and deep learning.

Decade-long Remission After CAR T Cell Therapy

Bill Ludwig, left, was the first patient to receive CAR T cells as part of clinical trials at Abramson Cancer Center. Carl June, right, has played a pioneering roll in the therapeutic use of CAR T cells. (Image: Penn Medicine)

Carl H. June, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine at Penn Medicine, director of the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy, and member of the Penn Bioengineering Graduate Group at the University of Pennsylvania, has led a new analytical study published in Nature that explains the longest persistence of CAR T cell therapy recorded to date against chronic lymphocytic leukemia (CLL), and shows that the CAR T cells remained detectable at least a decade after infusion, with sustained remission in both patients. June’s pioneering work in gene therapy led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating leukemia and transforming the fight against cancer. His lab develops new forms of T cell based therapies.

Read the story in Penn Today

Understanding Optimal Resource Allocation in the Brain

by Erica K. Brockmeier

A processed image representative of the types of images used in this study. Natural landscapes were transformed into binary images, ones made of black and white pixels, that were decomposed into different textures defined by specific statistics. (Image: Eugenio Piasini)

The human brain uses more energy than any other organ in the body, requiring as much as 20% of the body’s total energy. While this may sound like a lot, the amount of energy would be even higher if the brain were not equipped with an efficient way to represent only the most essential information within the vast, constant stream of stimuli taken in by the five senses. The hypothesis for how this works, known as efficient coding, was first proposed in the 1960s by vision scientist Horace Barlow.

Now, new research from the Scuola Internazionale Superiore di Studi Avanzati (SISSA) and the University of Pennsylvania provides evidence of efficient visual information coding in the rodent brain, adding support to this theory and its role in sensory perception. Published in eLife, these results also pave the way for experiments that can help understand how the brain works and can aid in developing novel artificial intelligence (AI) systems based on similar principles.

According to information theory—the study of how information is quantified, stored, and communicated—an efficient sensory system should only allocate resources to how it represents, or encodes, the features of the environment that are the most informative. For visual information, this means encoding only the most useful features that our eyes detect while surveying the world around us.

Vijay Balasubramanian, a computational neuroscientist at Penn, has been working on this topic for the past decade. “We analyzed thousands of images of natural landscapes by transforming them into binary images, made up of black and white pixels, and decomposing them into different textures defined by specific statistics,” he says. “We noticed that different kinds of textures have different variability in nature, and human subjects are better at recognizing those which vary the most. It is as if our brains assign resources where they are most necessary.”

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania. He is a member of the Penn Bioengineering Graduate Group.

Jennifer Phillips-Cremins Wins ISSCR Dr. Susan Lim Award for Outstanding Young Investigator

Jennifer Phillips-Cremins, Ph.D.

Jennifer E. Phillips-Cremins, Associate Professor and Dean’s Faculty Fellow in Bioengineering and Genetics, has been awarded the 2022 Dr. Susan Lim Award for Outstanding Young Investigator by the International Society for Stem Cell Research (ISSCR), the preeminent, global organization dedicated to stem cells research.

This award recognizes the exceptional achievements of an investigator in the early part of his or her independent career in stem cell research. Cremins works in the field of epigenetics, and is a pioneer in understanding how chromatin,  the substance within a chromosome, works:

“Dr. Phillips-Cremins is a gifted researcher with diverse skills across cell, molecular, and computational biology. She is a shining star in the stem cell field who has already made landmark contributions in bringing long-range chromatin folding mechanisms to stem cell research. In addition to her skills as an outstanding researcher,” ISSCR President Melissa Little, Ph.D., said. “She has flourished as an independent investigator, providing the stem cell field with unique and creative approaches that have facilitated conceptual leaps in our understanding of long-range spatial regulation of stem cell fate. Congratulations, Jennifer, on this prestigious honor.”

Cremins was awarded a NIH Director’s Pioneer Award in 2021 and a Chan Zuckerberg Initiative (CZI) grant as part of the CZI Collaborative Pairs Pilot Project in 2020. The long-term goal of her lab is to understand the mechanisms by which chromatin architecture governs genome function. The ISSCR will recognize Cremins and her research in a plenary session during the ISSCR annual meeting on June 15.

Read the full press release on the ISSCR website.