Inside the Ko Lab: Tracking Living Tissues

by

Black and white photo of Jina Ko inspecting a clear slide.
Jina Ko, Ph.D.

Engineers in the Center for Precision Engineering for Health (CPE4H) are focusing on innovations in diagnostics and delivery, cellular and tissue engineering, and the development of new devices that integrate novel materials with human tissues. Below is an excerpt from “Going Small to  Win Big: Engineering Personalized Medicine,” featuring the research from the laboratory of Jina Ko, Assistant Professor in Bioengineering and Pathology and Laboratory Medicine.

The Challenge

When scientists create methods to detect disease biomarkers, they give healthcare providers better tools to properly diagnose and treat patients. However, limitations to obtaining this information, especially when using living cells and tissues from patients, prevents a complete picture of what is unique about a case and decreases the chance that the best course of treatment can be identified.

The Status Quo

Several techniques exist for identifying multiple biomarkers in cells, but they are usually not compatible with observing changes over time in living cells or are limited by a set number of biomarkers that can be profiled. The chemicals used to profile multiple (>5) biomarkers are toxic to the cells, preventing live cell monitoring. Due to this limitation, a full understanding of the protein expressions of the living cells could not be obtained and a clear picture of what is actually occurring during the course of cellular changes was out of reach.

The Ko Lab’s Fix

Jina Ko, Assistant Professor in Bioengineering, is working to overcome this limitation with a method known as “scission-accelerated fluorophore exchange” (or SAFE), a new way to detect biomarkers in cells that is highly gentle and allows for high multiplexing via cyclic imaging so that more biomarkers can be identified in a single sample and changes in living cells and tissues can be tracked over time. She first developed this method during her postdoctoral training at Massachusetts General Hospital under the supervision of Jonathan Carlson and Ralph Weissleder.

The method uses “click” chemistry, which is a bioorthogonal, non-toxic and rapid reaction that allows the team to highlight the desired biomarkers in the samples without destroying them each time a microscopy cycle is run.

“You can’t identify a treatment that works for the average person, apply that treatment to everyone and expect the best outcomes,” says Ko. “Using this method, if we want to administer a therapy to a patient, we could remove a sample of their cells and use that sample to try different therapeutic options. After tracking the sample, we could predict if the patient would respond well to therapy A, but not therapy B. Our goal is that this technology will be applied in the clinic to help patients.”

Read the full story in Penn Engineering magazine.

Exploring What It Means to be Curious

In a new book ‘Curious Minds: The Power of Connection,’ Penn’s Dani S. Bassett and twin sibling Perry Zurn weave together history, linguistics, network science, neuroscience, and philosophy to unpack the concept of curiosity.

The following text is an excerpt from “Curious Minds: The Power of Connection” by Perry Zurn and Dani S. Bassett, © 2022 Massachusetts Institute of Technology.

Twin siblings and scholars Dani S. Bassett of Penn and Perry Zurn of American University collaborated over half a dozen years to write “Curious Minds: The Power of Connection.” (Image: Tony and Tracy Wood Photography)

Bugs. Sometimes, something just bugs you. A worm in your ear. We have all had the experience. You are going about your day, and something prompts you to wonder. You mull it over. You try on this explanation, or that one. And then you get distracted, and you move on. Or maybe you don’t, and the worm digs in deeper. Or maybe you do, but the worm returns to its wriggling later that night. You can’t shake it off. Maybe you pull out your phone or strike a few keys—or turn to a colleague or ping a friend. Gosh, now you really want to know! Perhaps you hit a few walls—paywalls or prejudices, differences of opinion or the limits of science, or even congenial scoffing at your pet project. Depending on who you are, you might also encounter outright sexism or racism, classism or ableism—all ways of telling you your bug is a bust. Forget this fleeting interest and focus on something that matters.

Regardless, let’s say, you carry on. Maybe the kids are screaming, or you are in a meeting, or you drive to the store for milk. Despite bombastic blasts from every corner, you hold on to what’s bugging you, refusing to let it bugger off. And then it happens … your mind begins to dance and to weave. Collecting the bits of things that might be relevant and stitching them together. So builds the briefest of webs. Perhaps it was a silkworm after all! Now you are really getting somewhere. This is your brain on curiosity.

(Image: © 2022 Massachusetts Institute of Technology)

And you are in good company. Rewind back to 1928, if you will. Virginia Woolf is sitting on the banks of a river (the Thames, the Cam, the Isis), and she has a worm in her ear: women and fiction. What even are they? she wonders. “Questions,” she calls them, “unsolved problems.” She finds herself walking and thinking, calmly at first and then feverishly. Crisscrossing the Brontë sisters and George Eliot, Charles Lamb and William Thackeray, she wonders not only about women and about fiction, but about their relation and the several ways in which it can be characterized. She strides by the nearby university, a place filled—as she puts it—with obsolete old minds, bereft of body and free of fact, loosed from the roughshod rambling toward truth she is currently undertaking. And then there it is!

Thought—to call it by a prouder name than it deserved—had let its line down into the stream. It swayed, minute after minute, hither and thither, among the reflections and the weeds, letting the water lift it and sink it, until—you know the little tug—the sudden conglomeration of an idea at the end of one’s line….

Read the full excerpt in Penn Today.

Dani S. Bassett is the J. Peter Skirkanich Professor at the University of Pennsylvania with a primary appointment in the School of Engineering and Applied Science’s Department of Bioengineering and secondary appointments in the School of Arts & Sciences’ Department of Physics & Astronomy, SEAS’ Department of Electrical and Systems Engineering, and the Perelman School of Medicine’s Departments of Neurology and Psychiatry.

Perry Zurn is an associate professor and director of undergraduate studies in philosophy at American University in the College of Arts and Sciences’ Department of Philosophy and Religion.

Shapeshifting Microrobots Can Brush and Floss Teeth

by Katherine Unger Baillie

In a proof-of-concept study, researchers from the School of Dental Medicine and School of Engineering and Applied Science shows that a hands-free system could effectively automate the treatment and removal of tooth-decay-causing bacteria and dental plaque. (Illustration: Melissa Pappas)

A shapeshifting robotic microswarm may one day act as a toothbrush, rinse, and dental floss in one.

The technology, developed by a multidisciplinary team at the University of Pennsylvania, is poised to offer a new and automated way to perform the mundane but critical daily tasks of brushing and flossing. It’s a system that could be particularly valuable for those who lack the manual dexterity to clean their teeth effectively themselves.

The building blocks of these microrobots are iron oxide nanoparticles that have both catalytic and magnetic activity. Using a magnetic field, researchers could direct their motion and configuration to form either bristlelike structures that sweep away dental plaque from the broad surfaces of teeth, or elongated strings that can slip between teeth like a length of floss. In both instances, a catalytic reaction drives the nanoparticles to produce antimicrobials that kill harmful oral bacteria on site.

Experiments using this system on mock and real human teeth showed that the robotic assemblies can conform to a variety of shapes to nearly eliminate the sticky biofilms that lead to cavities and gum disease. The Penn team shared their findings establishing a proof-of-concept for the robotic system in the journal ACS Nano.

“Routine oral care is cumbersome and can pose challenges for many people, especially those who have hard time cleaning their teeth” says Hyun (Michel) Koo, a professor in the Department of Orthodontics and divisions of Community Oral Health and Pediatric Dentistry in Penn’s School of Dental Medicine and co-corresponding author on the study. “You have to brush your teeth, then floss your teeth, then rinse your mouth; it’s a manual, multistep process. The big innovation here is that the robotics system can do all three in a single, hands-free, automated way.”

Read the full story in Penn Engineering Today.

Hyun (Michel) Koo is a professor in the Department of Orthodontics and divisions of Community Oral Health and Pediatric Dentistry in the School of Dental Medicine, co-director of the Center for Innovation & Precision Dentistry, and member of the Penn Bioengineering Graduate Group at the University of Pennsylvania.

Edward Steager is a senior research investigator in Penn’s School of Engineering and Applied Science.

Koo and Steager’s coauthors on the paper are Penn Dental Medicine’s Min Jun Oh, Alaa Babeer, Yuan Liu, and Zhi Ren and Penn Engineering’s Jingyu Wu, David A. Issadore, Kathleen J. Stebe, and Daeyeon Lee.

This work was supported in part by the National Institute for Dental and Craniofacial Research (grants DE025848 and DE029985), Procter & Gamble, and the Postdoctoral Research Program of Sungkyunkwan University.

Streamlining the Health Care Supply Chain

William Danon and Luka Yancopoulos, winners of the 2022 President’s Innovation Prize, will offer a software solution to make the health care supply chain more efficient.

by Brandon Baker

William Danon and Luka Yancopoulos pose in front of College Hall in April 2022. They are co-founders of Grapevine and the winners of the 2022 President’s Innovation Prize.

William Danon and Luka Yancopoulos are best friends. They’re also business partners.

The duo, who received this year’s President’s Innovation Prize (PIP) for Grapevine, met during sophomore year, connected through Yancopoulos’ roommate. As time went on, they did everything together: cooked meals, played basketball, and read and discussed fantasy novels.

“We spent a lot of time together,” Danon says.

It was only natural, then, that when the time came to start an actual venture, they’d do it together.

“They’re like brothers, in a very good way,” says mentor David Meaney of the School of Engineering and Applied Science, who describes their working dynamic as “complementary.” “I think that will serve them well. Most of what we do in faculty is collaborative, and I see elements of that in their partnership. I give them credit for stepping out and doing something unusual and keeping at it.”

How Grapevine came to be

Grapevine is a software solution and professional networking platform that connects small-to-medium-size players in the health care supply chain. It’s a sort of two-pronged solution: It helps institutions like hospital systems connect disjointed operations like procurement and inventory management internally, but also serves as a glue between these institutions and purveyors of medical equipment.

“William and Luka are impact-driven entrepreneurs whose collaborative synergies will take them far,” says Penn Interim President Wendell Pritchett. “The software provided by Grapevine is poised to reinvent how the health care industry buys and sells medical supplies and services and, truly, could not come at a timelier moment.”

The company is the evolution of a project they began at the onset of the COVID-19 pandemic, called Pandemic Relief Supply, which delivered $20 million of health care supplies to frontline workers.

“My mom was a nurse practitioner at New York Presbyterian Hospital, the largest hospital in the United States, and she was coming home with horror stories,” recalls Yancopoulos. “In surgery or the ER, a surgeon had to put on a garbage bag because they didn’t have a gown. And they gave her one mask to use for the rest of the month, and I’m seeing on the news, ‘Don’t wear a mask for more than three days.’”

This is where Yancopoulos and Danon first developed an interest in the health care supply chain. Using a database Penn allows students access to that maps the import of any good in the country, they did keyword matching to identify instreams of different goods and handed off findings to New York Presbyterian procurement staff. When McKesson, the largest provider of health care products and services in the U.S., took notice of what they were doing and reached out, they realized they were onto something. In response to their success, they started a company called Pandemic Relief Supply to distribute reliable medical supplies, including items like medical-grade masks and gloves, to frontline workers in the healthcare space.

As time passed, that project evolved into something larger: Grapevine.

A mock-up screenshot of a business profile on the Grapevine professional networking platform. (Image: William Danon)

In short, Grapevine’s software creates a professional networking platform to resolve miscommunications between suppliers and buyers, as well as adds a layer of transparency between interactants. Suppliers on the platform display real-time data about their inventory and shipping process, with timestamps; this prohibits companies from cherry-picking data or making false claims and creates a more health-care-supply-specific space for companies to interact than, say, LinkedIn.

“Primarily, the first step is we want people to use it internally, and streamline operations, and then through that centralized operational data, you can push that externally and that’s where [Grapevine] becomes a connector,” explains Danon. “Because when you’re choosing to connect with someone, the reason you can do so way more efficiently or quickly, is that data is actual operational data.”

To accomplish this level of transparency, the beginnings of Grapevine involved lots of legwork. Last year, the duo moved to Los Angeles to take stock of what suppliers existed where, and how reliable they were. They realized that many suppliers existed around Los Angeles because of port access; many medical supplies are imported from Asia. Their time in LA made the problem feel even more tangible, they agree.

“We were able to see people were doing outdated processes—manual processes—because there’s no other option,” Danon says. “So, we said, ‘Let’s get out there and do some work to be digital and technologically innovative.”

Read the full story in Penn Today.

N.B.: Yancopolous’s senior design team created “Harvest” for their capstone project in Bioengineering, building on the existing Grapevine software package. Read Harvest’s abstract and view their final presentation on the BE Labs website.

Penn Engineers Secure Wellcome Leap Contract for Lipid Nanoparticle Research Essential in Delivery of RNA Therapies

by Melissa Pappas

The Very Large Scale Microfluidic Integration (VLSMI) platform, a technology developed by the Penn researchers, contains hundreds of mixing channels for mass-producing mRNA-carrying lipid nanoparticles.

Penn Engineering secured a multi-million-dollar contract with Wellcome Leap under the organization’s $60 million RNA Readiness + Response (R3) program, which is jointly funded with the Coalition for Epidemic Preparedness Innovations (CEPI). Penn Engineers aim to create “on-demand” manufacturing technology that can produce a range of RNA-based vaccines.

The Penn Engineering team features Daeyeon Lee, Evan C Thompson Term Chair for Excellence in Teaching and Professor in Chemical and Biomolecular Engineering, Michael Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering, David Issadore, Associate Professor in Bioengineering and Electrical and Systems Engineering, and Sagar Yadavali, a former postdoctoral researcher in the Issadore and Lee labs and now the CEO of InfiniFluidics, a spinoff company based on their research. Drew Weissman of the Perelman School of Medicine, whose foundational research directly continued to the development of mRNA-based COVID-19 vaccines, is also a part of this interdisciplinary team.

The success of these COVID-19 vaccines has inspired a fresh perspective and wave of research funding for RNA therapeutics across a wide range of difficult diseases and health issues. These therapeutics now need to be equitably and efficiently distributed, something currently limited by the inefficient mRNA vaccine manufacturing processes which would rapidly translate technologies from the lab to the clinic.

Read more in Penn Engineering Today.

Single-cell Cancer Detection Project Wins 2021 NEMO Prize

This scProteome-seq array shows separated protein biomarkers (green and magenta spots) from thousands of single cells.

Penn Health-Tech’s Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize awards $80,000 to support early-stage ideas joining engineering and medicine. The goal of the prize is to encourage collaboration between the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science by supporting innovative ideas that might not receive funding from traditional sources.

This year, the NEMO Prize has been awarded to a team of researchers from Penn Engineering’s Department of Bioengineering. Their project aims to develop a technology that can detect multiple cancer biomarkers in single cells from tumor biopsy samples.

As cancer cells grow in the body, one of the characteristics that influences tumor growth and response to treatment is cancer cell state heterogeneity, or differences in cell states. Methods that rapidly catalogue cell heterogeneity may be able to detect rare cells responsible for tumor growth and drug resistance.

Single-cell transcriptomics (scRNA-seq) is the standard method for studying cell states; by amplifying and analyzing the cell’s complement of RNA sequences at a given time, researchers can get a snapshot of what proteins the cell is in the process of making. However, this method does not fully capture the function of the cell. The field of proteomics, which captures the actual protein content of cells along with post-translational modifications, provides a better picture of the cell’s function, but single-cell proteomic methods with the same sensitivity as scRNA-seq do not currently exist.

Alex Hughes, Lukasz Bugaj and Andrew Tsourkas

This collaborative project, which joins Assistant Professors Alex Hughes and Lukasz Bugaj, as well as Professor Andrew Tsourkas, aims to change that by developing multiplexed, sensitive and highly specific single-cell proteomics technologies to advance our understanding of cancer, its detection and its treatment.

This new technology, called scProteome-seq, builds from Hughes’s previous work.

“My specific expertise here is as an inventor of single-cell western blotting, which is the core technology that our team is building on,” says Hughes. “Single-cell proteomics technologies of this type have a track-record of commercial translation for applications in basic science and clinical automation, so our approach has a high potential for real-world impact.”

The current technology from Hughes’ lab separates proteins in cells by their molecular weight and “blots” them on a piece of paper. Improvements to this technology included in this project will remove the limitation of using light-emitting dyes to detect different proteins and instead use DNA barcodes to differentiate them.

Read the full story in Penn Engineering Today.

Charting a Path Forward with Unifying Definition of Cytokine Storm

by Melissa Moody

Penn Medicine researchers have developed a unifying definition of ‘cytokine storm’ to provide a framework to assess and treat patients whose immune systems have gone rogue.

Penn Medicine’s David Fajgenbaum (left) and Carl June (right). (Image: Penn Medicine News)

One of the most elusive aspects for clinicians treating COVID-19 is the body’s immune response to the virus. In the most severe cases of COVID-19, the immune system goes into overdrive, resulting in a fever, multiorgan system damage, and often death—a cytokine storm. But how to detect and treat a cytokine storm requires that clinicians can identify it as such.

Two Penn Medicine researchers have developed a unifying definition of “cytokine storm” to provide physicians with a framework to assess and treat severely-ill patients whose immune systems have gone rogue. Cytokine storms can be triggered by different pathogens, disorders, or treatments, from COVID-19 to Castleman disease to CAR T cell therapy.

In a paper published in the New England Journal of Medicine, David Fajgenbaum, an assistant professor of translational medicine & human genetics and director of the Center for Cytokine Storm Treatment & Laboratory (CSTL), and Carl June, a professor of pathology and laboratory medicine and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center, and the Parker Institute for Cancer Immunotherapies define a cytokine storm as requiring elevated circulating cytokine levels, acute systemic inflammatory symptoms, and secondary organ dysfunction beyond what could be attributed to a normal response to a pathogen, if a pathogen is present.

“There has never been a defining central review of what a cytokine storm is and how to treat one, and now with COVID-19, that is a major issue,” says Fajgenbaum, a Castleman disease patient who has previously experienced five cytokine storms himself. “I’ve spent the last 10 years of my life as a cytokine storm patient and researcher, so I know the importance of having a comprehensive unified definition to find therapies that work across the various types of cytokine storms.”

There is widespread recognition that the immune response to a pathogen, but not the pathogen itself, can contribute to multiorgan dysfunction and other symptoms. Additionally, similar cytokine storm syndromes can occur with no obvious infection.

Read more at Penn Medicine News.

NB: Carl June is a member of the Penn Bioengineering Graduate Group.

An Ecosystem of Innovation Fosters Tech-based Solutions to COVID-19 Challenges

by Erica K. Brockmeier

GRASP lab researchers (from left) Bernd Pfrommer, Kenneth Chaney, and Caio Mucchiani assembling telemedicine cart prototypes in Levine hall earlier this spring. (Image courtesy of Kenneth Chaney and Bernd Pfrommer)

Since the start of the spring, members of the Penn community have been working to combat coronavirus and its many impacts. Some people are studying COVID-19 or developing vaccines, while others are 3D-printing face shields for health care workers and delivering fall courses online.

And while innovation in health care usually brings to mind new treatments and medicines, the efforts of clinicians, engineers, and IT specialists demonstrate the importance technological infrastructure for rapidly deployable, tech-based solutions so clinicians can provide the best care to patients amid social distancing and coronavirus restrictions.

The telemedicine revolution

In late March, telemedicine was key for allowing Penn Medicine clinicians to deliver care while avoiding potentially risky in-person interactions. Chief Medical Information Officer C. William Hanson III and his team helped set up the IT infrastructure for scaling up telemedicine capabilities and provided guidance to clinicians. Thanks to the quick pivot, Penn Medicine went from 300 telemedicine visits in February to more than 7,500 visits per day in a matter of weeks.

But far from seeing telemedicine as a temporary solution during the pandemic, Hanson has been a long-time advocate for this approach to health care. In his role as liaison between clinicians and the IT community in the past 10 years Hanson, helped establish remote ICU monitoring protocols and broadened opportunities for televisits with specialists. Now, with the pandemic removing many of the previous barriers to entry, be they technical, insurance-based, or simply a lack of familiarity, Hanson believes that telemedicine is here to stay.

“As the pandemic evolved, people were aware that telemedicine could help the health care system, as well as doctors and patients, during this crisis,” he says. “Now, there are definitely places where telemedicine makes good sense, and we will continue to use that as part of our way of handling a problem.” Other benefits include removing geographic barriers to entry for new patients, reduced appointment times, increased patient satisfaction, and reduced health care provider burnout.

Simple solutions for COVID-19 challenges

As the director of Penn’s Telestroke Program, neurologist Michael Mullen has experience diagnosing from a distance. This spring, telemedicine carts his group uses were repurposed in COVID ICUs. At the same time, Mullen and group wanted to expand their ability to assess stroke patients remotely, so he reached out to Brian Litt, faculty director of Penn Health-Tech, to see how he could collaborate to create an analogous telemedicine station using readily available, cost-effective components.

Rapid and simple solutions are at the heart of Penn’s ModLab, a subgroup of the GRASP lab focused on robots made of configurable individual components. As part of a COVID-19 rapid response initiative, engineers worked with Mullen to figure out a viable solution in record time. “The idea was to make it as simple and as fast as possible,” says graduate student Caio Mucchiani. “With robotics, usually you want to make things more sophisticated, however, given the situation, we needed to know how we could use off-the-shelf components to make something.”

Fellow graduate student Ken Chaney, postdoc Bernd Pfrommer, and Mucchiani came up with a plan that replicated the required specs of the existing telemedicine carts, including state-of-the-art cameras for detailed imaging as well as a reliable, easily rechargeable battery. The team then put together 10 telemedicine carts, assembling the prototypes with social distancing and masks at the GRASP lab in early April.

While changes to treatment approaches mean that these carts still require additional field testing, Mullen is still eager to expand the program, be it for diagnosing patients safely or educating medical students in an era of social distancing. “In the setting of COVID, when everything was getting crazy, it was remarkable to see the energy that GRASP brought to help,” adds Mullen. “Everyone was really busy, and it was amazing to see this group of people who wanted to use their expertise to help.”

Continue reading at Penn Today.

NB: Brian Litt is Professor in Neurology and Bioengineering.

BE Seminar Series: October 3rd with Jens Herberholz, Ph.D.

The Bioengineering Department seminar series kicks off for the fall semester in one week. We hope to see you there!

Jens Herberholz, Ph.D.

Speaker: Jens Herberholz, Ph.D.
Associate Professor, Department of Psychology, Neuroscience & Cognitive Science Graduate Program
Co-Director, Brain and Behavior Initiative (BBI)
University of Maryland College Park

Date: Thursday, October 3, 2019
Time: 12:00-1:30 pm
Location: Room 337, Towne Building

 

Title: “Developing Neuroengineering Solutions of Biomedical Relevance Using Crayfish as a Model System”

Abstract:

In my talk, I will first describe one of the main projects in my lab that investigates the underlying cellular-molecular mechanisms for changes in alcohol sensitivity of crayfish with different prior social experiences. In this context, I will explain why “simple” invertebrates may provide unique advantages for studying complex phenomena such as socially-dependent drug effects. Crayfish are inexpensive and easily maintained in the laboratory, and they have an accessible nervous system with large, identified neurons that link directly to behavior and can sustain many hours of experimental study. This allows for high precision and reproducibility and makes crayfish a suitable model not just for investigating neurobehavioral questions, but for developing and improving biomedical devices and tools. In the second part of my talk, I will illustrate two projects that are currently ongoing in collaboration with engineering colleagues at UMD. The first one aims to develop nanoparticles that wirelessly activate and record neural activity patterns using microwave signals. Preliminary data using individual neurons of the ex vivo crayfish nerve cord revealed that single action potentials can be robustly recorded by activating microwave signals in a nanoscale magnetic tunnel junction. The future goal of this project is to develop this technique for non-invasive monitoring and modulating of activity in brains of higher complexity. The second project interfaces the crayfish ex vivo ventral nerve cord and innervated hindgut with a multi-sensor 3D printed platform that contains cultured human gut cells and interchangeable colonies of microbiota. The physiological responses to serotonin release from cell cultures will be measured and quantified in crayfish neurons of the central and enteric nervous system and on corresponding hindgut motility with intracellular electrophysiology and motion tracking. The long-term goal is to develop a real-time, high-throughput discovery platform that allows detailed investigation of the cellular processes underlying the gut-brain axis.

Bio:

Dr. Jens Herberholz is an Associate Professor in the Psychology Department and the Director of the Neuroscience and Cognitive Science Program, an interdisciplinary, multi-departmental research and graduate training program at the University of Maryland, College Park. Dr. Herberholz received his PhD from the Technical University in Munich, Germany. His PhD work investigated the importance of mechanosensory signals during aggressive interactions in snapping shrimp. Following his PhD. he was a Postdoctoral Associate and Research Scientist at Georgia State University where he combined single-cell electrophysiology with behavioral analysis to study the neurobehavioral underpinnings of escape in crayfish. In his own laboratory, he continues to use crayfish as a primary animal model for research. Crayfish make complex behavioral decisions, and they feature an accessible nervous system with large, identifiable neurons, which allows for cellular and circuit-level analysis using neurophysiological, neuroanatomical, neurochemical, and neuroimaging techniques. His current research program focuses on identifying the structure and function of decision-making neural circuitry and understanding the interconnections between neural activity patterns and motor action in the context of aggression and predator avoidance. His most recent work addresses fundamental questions regarding the role of neurochemical inhibition, including the interplay between the neurocellular effects of alcohol and behavioral disinhibition, with the long-term goal of identifying how nervous system function is linked to adaptive and maladaptive behavioral output. Dr. Herberholz has published many peer-reviewed articles and conference abstracts as well as several book chapters on these topics; his research has been supported by the National Science Foundation (NSF), and featured by various media outlets. He is an Associate Editor for the journal “Behaviour”.

César de la Fuente Named Penn Presidential Professor

Cesar de la Fuente-Nunez, PhD

César de la Fuente, assistant professor in the Perelman School of Medicine and in Department of Bioengineering in the School of Engineering and Applied Science, has been awarded a Presidential Professorship by University of Pennsylvania President Amy Gutmann. Presidential Professorships, which have terms lasting five years, are awarded to outstanding scholars who, according to the award announcement, “demonstrably contribute excellence and diversity to Penn’s inclusive community.”

De la Fuente is a synthetic biologist who incorporates a computational approach into his work, attempting to engineer biological systems that can transform medical tools and therapies. His lab studies naturally occurring proteins and uses their discoveries to design artificial antibiotics and living medicines.

De la Fuente has also been named one of MIT Technology Review’s “35 Innovators Under 35” and one of GEN’s “Top 10 Under 40” for his pioneering work on engineered medicines.

Read the Presidential Professorship award announcement at Penn Medicine, and learn more about de la Fuente’s research on his lab website.

Originally published on the Penn Engineering Medium blog.