Carl June Highlighted for Success in Gene Therapy

Carl June, MD

Scientific American recently featured two gene therapies that were invented at Penn, including research from Carl June, MD, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine, director of the Center for Cellular Immunotherapies, and member of the Penn Bioengineering Graduate Group, which led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Read “Four Success Stories in Gene Therapy” in Scientific American.

Nerve Repair, With Help From Stem Cells

A cross-disciplinary Penn team is pioneering a new approach to peripheral nerve repair.

In a new publication in the journal npj Regenerative Medicine, a team of Penn researchers from the School of Dental Medicine and the Perelman School of Medicine “coaxed human gingiva-derived mesenchymal stem cells (GMSCs) to grow Schwann-like cells, the pro-regenerative cells of the peripheral nervous system that make myelin and neural growth factors,” addressing the need for regrowing functional nerves involving commercially-available scaffolds to guide nerve growth. The study was led by Anh Le, Chair and Norman Vine Endowed Professor of Oral Rehabilitation in the Department of Oral and Maxillofacial Surgery/Pharmacology at the University of Pennsylvania School of Dental Medicine, and was co-authored by D. Kacy Cullen, Associate Professor in Neurosurgery at the Perelman School of Medicine at Penn and the Philadelphia Veterans Affairs Medical Center and member of the Bioengineering Graduate Group:

D. Kacy Cullen (Image: Eric Sucar)

“To get host Schwann cells all throughout a bioscaffold, you’re basically approximating natural nerve repair,” Cullen says. Indeed, when Le and Cullen’s groups collaborated to implant these grafts into rodents with a facial nerve injury and then tested the results, they saw evidence of a functional repair. The animals had less facial droop than those that received an “empty” graft and nerve conduction was restored. The implanted stem cells also survived in the animals for months following the transplant.

“The animals that received nerve conduits laden with the infused cells had a performance that matched the group that received an autograft for their repair,” he says. “When you’re able to match the performance of the gold-standard procedure without a second surgery to acquire the autograft, that is definitely a technology to pursue further.”

Read the full story and view the full list of collaborators in Penn Today.

Dani Bassett Elected an American Physical Society Fellow

Dani Bassett, Ph.D.

Dani S. Bassett,  J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, has been elected a 2021 Fellow of the American Physical Society (APS) “for significant contributions to the network modeling of the human brain, including dynamical changes caused by evolution, learning, aging, and disease.”

The prestigious APS Fellowship Program signifies recognition by one’s professional peers. Each year, no more than one half of one percent of the APS membership is recognized with this distinct honor. Bassett’s election and groundbreaking work in biological physics and network science will be recognized through presentation of a certificate at the APS March Meeting.

Bassett is a pioneer in the field of network neuroscience, an emerging subfield which incorporates elements of mathematics, physics,  biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits. They lead the Complex Systems lab which tackles problems at the intersection of science, engineering, and medicine using systems-level approaches, exploring fields such as curiosity, dynamic networks in neuroscience, and psychiatric disease.

Bassett recently collaborated with Penn artist-in-residence Rebecca Kamen and other scholars on an interdisciplinary art exhibit on the creative process in art and science at the Katzen Art Center at American University. They have also published research modeling different types of curiosity and exploring gender-based citation bias in neuroscience publishing.

“I’m thrilled and humbled to receive this honor from the American Physical Society,” says Bassett. “I am indebted to the many fantastic mentees, colleagues, and mentors that have made my time in science such an exciting adventure. Thank you.”

Read more stories about Bassett’s research here.

Penn Anti-Cancer Engineering Center Will Delve Into the Disease’s Physical Fundamentals

by Evan Lerner

A colorized microscope image of an osteosarcoma shows how cellular fibers can transfer physical force between neighboring nuclei, influencing genes. The Penn Anti-Cancer Engineering Center will study such forces, looking for mechanisms that could lead to new treatments or preventative therapies.

Advances in cell and molecular technologies are revolutionizing the treatment of cancer, with faster detection, targeted therapies and, in some cases, the ability to permanently retrain a patient’s own immune system to destroy malignant cells.

However, there are fundamental forces and associated challenges that determine how cancer grows and spreads. The pathological genes that give rise to tumors are regulated in part by a cell’s microenvironment, meaning that the physical push and pull of neighboring cells play a role alongside the chemical signals passed within and between them.

The Penn Anti-Cancer Engineering Center (PACE) will bring diverse research groups from the School of Engineering and Applied Science together with labs in the School of Arts & Sciences and the Perelman School of Medicine to understand these physical forces, leveraging their insights to develop new types of treatments and preventative therapies.

Supported by a series of grants from the NIH’s National Cancer Institute, the PACE Center is Penn’s new hub within the Physical Sciences in Oncology Network. It will draw upon Penn’s ecosystem of related research, including faculty members from the Abramson Cancer Center, Center for Targeted Therapeutics and Translational Nanomedicine, Center for Soft and Living Matter, Institute for Regenerative Medicine, Institute for Immunology and Center for Genome Integrity.

Dennis Discher and Ravi Radhakrishnan

The Center’s founding members are Dennis Discher, Robert D. Bent Professor with appointments in the Departments of Chemical and Biomolecular Engineering (CBE), Bioengineering (BE) and Mechanical Engineering and Applied Mechanics (MEAM), and Ravi Radhakrishnan, Professor and chair of BE with an appointment in CBE.

Discher, an expert in mechanobiology and in delivery of cells and nanoparticles to solid tumors, and Radhakrishnan, an expert on modeling physical forces that influence binding events, have long collaborated within the Physical Sciences in Oncology Network. This large network of physical scientists and engineers focuses on cancer mechanisms and develops new tools and trainee opportunities shared across the U.S. and around the world.

Lukasz Bugaj, Alex Hughes, Jenny Jiang, Bomyi Lim, Jennifer Lukes and Vivek Shenoy (Clockwise from upper left).

Additional Engineering faculty with growing efforts in the new Center include Lukasz Bugaj, Alex Hughes and Jenny Jiang (BE), Bomyi Lim (CBE), Jennifer Lukes (MEAM) and Vivek Shenoy (Materials Science and Engineering).

Among the PACE Center’s initial research efforts are studies of the genetic and immune mechanisms associated with whether a tumor is solid or liquid and investigations into how physical stresses influence cell signaling.

Originally posted in Penn Engineering Today.

Using Big Data to Measure Emotional Well-being in the Wake of George Floyd’s Murder

by Melissa Pappas

George Floyd’s murder had an undeniable emotional impact on people around the world, as evidenced by this memorial mural in Berlin, but quantifying that impact is challenging. Researchers from Penn Engineering and Stanford have used a computational approach on U.S. survey data to break down this emotional toll along racial and geographic lines. Their results show a significantly larger amount of self-reported anger and sadness among Black Americans than their White counterparts. (Photo: Leonhard Lenz)

The murder of George Floyd, an unarmed Black man who was killed by a White police officer, affected the mental well-being of many Americans. The effects were multifaceted as it was an act of police brutality and example of systemic racism that occurred during the uncertainty of a global pandemic, creating an even more complex dynamic and emotional response.

Because poor mental health can lead to a myriad of additional ailments, including poor physical health, inability to hold a job and an overall decrease in quality of life, it is important to understand how certain events affect it. This is especially critical when the emotional burden of these events  falls most on demographics affected by systemic racism. However, unlike physical health, mental health is challenging to characterize and measure, and thus, population-level data on mental health has been limited.

To better understand patterns of mental health on a population scale, Penn Engineers Lyle H. Ungar, Professor of Computer and Information Science (CIS), and Sharath Chandra Guntuku, Research Assistant Professor in CIS, take a computational approach to this challenge. Drawing on large-scale surveys as well as language analysis in social media through their work with the World Well-Being Project, they have developed visualizations of these patterns across the U.S.

Their latest study involves tracking changes in emotional and mental health following George Floyd’s murder. Combining polling data from the U.S. Census and Gallup, Guntuku, Ungar and colleagues have shown that Floyd’s murder spiked a wave of unprecedented sadness and anger across the U.S. population, the largest since relevant data began being recorded in 2009.

Read the full story in Penn Engineering Today.

N.B. Lyle Ungar is also a member of the Penn Bioengineering Graduate Group.

Atomically-thin, Twisted Graphene Has Unique Properties

by Erica K. Brockmeier

New collaborative research describes how electrons move through two different configurations of bilayer graphene, the atomically-thin form of carbon. These results provide insights that researchers could use to design more powerful and secure quantum computing platforms in the future.

New research published in Physical Review Letters describes how electrons move through two different configurations of bilayer graphene, the atomically-thin form of carbon. This study, the result of a collaboration between Brookhaven National Laboratory, the University of Pennsylvania, the University of New Hampshire, Stony Brook University, and Columbia University, provides insights that researchers could use to design more powerful and secure quantum computing platforms in the future.

“Today’s computer chips are based on our knowledge of how electrons move in semiconductors, specifically silicon,” says first and co-corresponding author Zhongwei Dai, a postdoc at Brookhaven. “But the physical properties of silicon are reaching a physical limit in terms of how small transistors can be made and how many can fit on a chip. If we can understand how electrons move at the small scale of a few nanometers in the reduced dimensions of 2-D materials, we may be able to unlock another way to utilize electrons for quantum information science.”

When a material is designed at these small scales, to the size of a few nanometers, it confines the electrons to a space with dimensions that are the same as its own wavelength, causing the material’s overall electronic and optical properties to change in a process called quantum confinement. In this study, the researchers used graphene to study these confinement effects in both electrons and photons, or particles of light.

The work relied upon two advances developed independently at Penn and Brookhaven. Researchers at Penn, including Zhaoli Gao, a former postdoc in the lab of Charlie Johnson who is now at The Chinese University of Hong Kong, used a unique gradient-alloy growth substrate to grow graphene with three different domain structures: single layer, Bernal stacked bilayer, and twisted bilayer. The graphene material was then transferred onto a special substrate developed at Brookhaven that allowed the researchers to probe both electronic and optical resonances of the system.

“This is a very nice piece of collaborative work,” says Johnson. “It brings together exceptional capabilities from Brookhaven and Penn that allow us to make important measurements and discoveries that none of us could do on our own.”

Read the full story in Penn Today.

Charlie Johnson is the Rebecca W. Bushnell Professor of Physics and Astronomy in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania and a member of the Penn Bioengineering Graduate Group.

Reimagining Scientific Discovery Through the Lens of an Artist

by Erica K. Brockmeier

Rebecca Kamen, Penn artist-in-residence and visiting scholar, has a new exhibition titled “Reveal: The Art of Reimagining Scientific Discovery” at American University Museum at the Katzen Arts Center that explores curiosity and the creative process across art and science. (Image: Greg Staley)

Rebecca Kamen, Penn artist-in-residence and visiting scholar, has long been interested in science and the natural world. As a Philadelphia native and an artist with a 40-plus-year career, her intersectional work sheds light on the process of scientific discovery and its connections to art, with previous exhibitions that celebrate Apollo 11’s “spirit of exploration and discovery” to new representations of the periodic table of elements.

Now, in her latest exhibition, Kamen has created a series of pieces that highlight how the creative processes in art and science are interconnected. In “Reveal: The Art of Reimagining Scientific Discovery,” Kamen chronicles her own artistic process while providing a space for self-reflection that enables viewers to see the relationship between science, art, and their own creativity.

The exhibit, on display at the Katzen Art Center at American University, was inspired by the work of Penn professor Dani Bassett and American University professor Perry Zurn, the exhibit’s faculty sponsor. The culmination of three years of work, “Reveal” features collaborations with a wide range of scientists, including philosophers at American University, microscopists at the National Institutes of Health studying SARS-CoV-2 , and researchers in Penn’s Complex Systems Lab and the Addiction, Health, and Adolescence (AHA!) Lab.

Continue reading at Penn Today.

Dani S. Bassett is the J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science at the University of Pennsylvania. She also has appointments in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences and the departments of Neurology and Psychiatry in the Perelman School of Medicine at Penn.

Rebecca Kamen is a visiting scholar and artist-in-residence in the Department of Physics & Astronomy in Penn’s School of Arts & Sciences.

David Lydon-Staley is an assistant professor in the Annenberg School for Communication at Penn and was formerly a postdoc in the Bassett lab.

Dale Zhou is a Ph.D. candidate in Penn’s Neuroscience Graduate Group.

“Reveal: The Art of Reimagining Scientific Discovery,” presented by the Alper Initiative for Washington Art and curated by Sarah Tanguy, is on display at the American University Museum in Washington, D.C., until Dec. 12.

The exhbition catalog, which includes an essay on “Radicle Curiosity” by Perry Zurn and Dani S. Bassett, can be viewed online.

Penn Establishes the Center for Precision Engineering for Health with $100 Million Commitment

by Evan Lerner

The Center for Precision Engineering for Health will bring together researchers spanning multiple scientific fields to develop novel therapeutic biomaterials, such as a drug-delivering nanoparticles that can be designed to adhere to only to the tissues they target. (Image: Courtesy of the Mitchell Lab)

The University of Pennsylvania announced today that it has made a $100 million commitment in its School of Engineering and Applied Science to establish the Center for Precision Engineering for Health.

The Center will conduct interdisciplinary, fundamental, and translational research in the synthesis of novel biomolecules and new polymers to develop innovative approaches to design complex three dimensional structures from these new materials to sense, understand, and direct biological function.

“Biomaterials represent the ‘stealth technology’ which will create breakthroughs in improving health care and saving lives,” says Penn President Amy Gutmann. “Innovation that combines precision engineering and design with a fundamental understanding of cell behavior has the potential to have an extraordinary impact in medicine and on society. Penn is already well established as an international leader in innovative health care and engineering, and this new Center will generate even more progress to benefit people worldwide.”

Penn Engineering will hire five new President’s Penn Compact Distinguished Professors, as well as five additional junior faculty with fully funded faculty positions that are central to the Center’s mission. New state-of-the-art labs will provide the infrastructure for the research. The Center will seed grants for early-stage projects to foster advances in interdisciplinary research across engineering and medicine that can then be parlayed into competitive grant proposals.

“Engineering solutions to problems within human health is one of the grand challenges of the discipline,” says Vijay Kumar, Nemirovsky Family Dean of Penn Engineering. “Our faculty are already leading the charge against these challenges, and the Center will take them to new heights.”

This investment represents a turning point in Penn’s ability to bring creative, bio-inspired approaches to engineer novel behaviors at the molecular, cellular, and tissue levels, using biotic and abiotic matter to improve the understanding of the human body and to develop new therapeutics and clinical breakthroughs. It will catalyze integrated approaches to the modeling and computational design of building blocks of peptides, proteins, and polymers; the synthesis, processing, and fabrication of novel materials; and the experimental characterizations that are needed to refine approaches to design, processing, and synthesis.

“This exciting new initiative,” says Interim Provost Beth Winkelstein, “brings together the essential work of Penn Engineering with fields across our campus, especially in the Perelman School of Medicine. It positions Penn for global leadership at the convergence of materials science and biomedical engineering with innovative new techniques of simulation, synthesis, assembly, and experimentation.”

Examples of the types of work being done in this field include new nanoparticle technologies to improve storage and distribution of vaccines, such as the COVID-19 mRNA vaccines; the development of protocells, which are synthetic cells that can be engineered to do a variety of tasks, including adhering to surfaces or releasing drugs; and vesicle based liquid biopsy for diagnosing cancer.

N.B.: This story originally appeared in Penn Engineering Today.

Beth Winkelstein is the Eduardo D. Glandt President’s Distinguished Professor in Bioengineering.

The featured illustration comes from a recent study led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering, and Margaret Billingsley, a graduate student in his lab.

Penn Engineers Will Use NSF Grant to Develop ‘DReAM’ for On-demand, On-site mRNA Manufacturing

by Melissa Pappas

Daeyeon Lee, Kathleen Stebe and Michael Mitchell

COVID-19 vaccines are just the beginning for mRNA-based therapies; enabling a patient’s body to make almost any given protein could revolutionize care for other viruses, like HIV, as well as various cancers and genetic disorders. However, because mRNA molecules are very fragile, they require extremely low temperatures for storage and transportation. The logistical challenges and expense of maintaining these temperatures must be overcome before mRNA therapies can become truly widespread.

With these challenges in mind, Penn Engineering researchers are developing a new manufacturing technique that would be able to produce mRNA sequences on demand and on-site, isolating them in a way that removes the need for cryogenic temperatures. With more labs able to make and store mRNA-based therapeutics on their own, the “cold chain” between manufacturer and patient can be made shorter, faster and less expensive.

The National Science Foundation (NSF) is supporting this project, known as Distributed Ribonucleic Acid Manufacturing, or DReAM, through a four-year, $2 million grant from its Emerging Frontiers in Research and Innovation (EFRI) program.

The project will be led by Daeyeon Lee, Evan C Thompson Term Chair for Excellence in Teaching and Professor in the Department of Chemical and Biomolecular Engineering (CBE), along with Kathleen Stebe, Richer and Elizabeth Goodwin Professor in CBE and in the Department of Mechanical Engineering and Applied Mechanics. They will collaborate with Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, Drexel University’s Masoud Soroush and Michael Grady, the University of Oklahoma’s Dimitrios Papavassiliou and the University of Colorado Boulder’s Joel Kaar.

Read the full story in Penn Engineering Today.

Yogesh Goyal Appointed Assistant Professor at Northwestern University

Yogesh Goyal, Ph.D.

The Department of Bioengineering is proud to congratulate Yogesh Goyal on his appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University. His lab will be housed within the Center for Synthetic Biology. His appointment will begin in Spring 2022.

Yogesh grew up in Chopra Bazar, a small rural settlement in Jammu and Kashmir, India. He received his undergraduate degree in Chemical Engineering from the Indian Institute of Technology Gandhinagar. Yogesh joined Princeton University for his Ph.D. in Chemical and Biological Engineering, jointly mentored by Professors Stanislav Shvartsman and Gertrud Schüpbach. Yogesh is currently a Jane Coffin Childs Postdoctoral Fellow in the lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn.

“I am so excited for Yogesh beginning his faculty career,” Raj says. “He is a wonderful scientist with a sense of aesthetics. His work is simultaneously significant and elegant, a powerful combination.”

With a unique background in engineering, developmental biology, biophysical modeling, and single-cell biology, Yogesh develops quantitative approaches to problems in developmental biology and cancer drug resistance. As a postdoc, Yogesh developed theoretical and experimental lineage tracing approaches to study how non-genetic fluctuations may arise within genetically identical cancer cells and how these fluctuations affect the outcomes upon exposure to targeted therapy drugs. The Goyal Lab at Northwestern will “combine novel experimental, computational, and theoretical frameworks to monitor, perturb, model, and ultimately control single-cell variabilities and emergent fate choices in development and disease, including cancer and developmental disorders.”

“I am excited to start a new chapter in my academic career at Northwestern University,” Goyal says. “I am grateful for my time at Penn Bioengineering, and I thank my mentor Arjun Raj and the rest of the lab members for making this time intellectually and personally stimulating.”

Congratulations to Dr. Goyal from everyone at Penn Bioengineering!