Danielle Bassett and Jason Burdick are Among World’s Most Highly Cited Researchers

Danielle Bassett and Jason Burdick
Danielle Bassett and Jason Burdick

The nature of scientific progress is often summarized by the Isaac Newton quotation, “If I have seen further it is by standing on the shoulders of giants.” Each new study draws on dozens of earlier ones, forming a chain of knowledge stretching back to Newton and the scientific giants his work referenced.

Scientific publishing and referencing has become more formal since Newton’s time, with databases of citations allowing for sophisticated quantitative analyses of that flow of information between researchers.

The Institute for Scientific Information and the Web of Science Group provide a yearly snapshot of this flow, publishing a list of the researchers who are in the top 1 percent of their respective fields when it comes to the number of times their work has been cited.

Danielle Bassett, J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, and Jason Burdick, Robert D. Bent Professor in the department of Bioengineering, are among the 6,389 researchers named to the 2020 list.

Bassett is a pioneer in the field of network neuroscience, which incorporates elements of mathematics, physics,  biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits. Burdick is an expert in tissue engineering and the design of biomaterials for regenerative medicine; by precisely tailoring the microenvironment within these materials, they can influence stem cell differentiation or trigger the release of therapeutics.

Bassett and Burdick were named to the Web of Science’s 2019 Highly Cited Researchers list as well.

Originally posted in Penn Engineering Today.

Nader Engheta Awarded Isaac Newton Medal and Prize

 

Nader Engheta, PhD

Nader Engheta, H. Nedwill Ramsey Professor in Electrical and Systems Engineering, Bioengineering and Materials Science and Engineering, has been awarded the 2020 Isaac Newton Medal and Prize by the Institute of Physics (IOP). The IOP is the professional body and scholarly society for physics in the UK and Ireland.

Engheta has been recognized for ” groundbreaking innovation and transformative contributions to electromagnetic complex materials and nanoscale optics, and for pioneering development of the fields of near-zero-index metamaterials, and material-inspired analogue computation and optical nanocircuitry.”

Read the full story in Penn Engineering Today.

Yale Cohen and Douglas Smith Awarded 2020 Penn Medicine Awards of Excellence

Yale Cohen, Ph.D.
Douglas H. Smith, M.D.

The Perelman School of Medicine has announced the winners of the 2020 Penn Medicine Awards of Excellence. The Office of the Dean says:

“These awardees exemplify our profession’s highest values of scholarship, teaching, innovation, commitment to service, leadership, professionalism and dedication to patient care. They epitomize the preeminence and impact we all strive to achieve. The awardees range from those at the beginning of their highly promising careers to those whose distinguished work has spanned decades.

Each recipient was chosen by a committee of distinguished faculty from the Perelman School of Medicine or the University of Pennsylvania. The contributions of these clinicians and scientists exemplify the outstanding quality of patient care, mentoring, research, and teaching of our world-class faculty.”

Two faculty members affiliated with Penn Bioengineering are among this year’s recipients.

Yale Cohen, PhD, Professor of Otorhinolaryngology with secondary appointments in Neuroscience and Bioengineering, is the recipient of the Jane M. Glick Graduate Student Teaching Award. Cohen is an alumnus of the Penn Bioengineering doctoral program and is currently the department’s Graduate Chair.

“Dr. Cohen’s commitment to educating and training the next generation of scientists exemplifies the type of scientist and educator that Jane Glick represented. His students value his highly engaging and supportive approach to teaching, praising his enthusiasm, energy, honesty, and compassion.”

Douglas H. Smith, MD, Robert A. Groff Endowed Professor of Research and Teaching in Neurosurgery and member of the Penn Bioengineering Graduate Group, is the recipient of this year’s William Osler Patient Oriented Research Award:

“Dr. Smith is the foremost authority on diffuse axonal injury (DAI) as the unifying hypothesis behind the short- and long-term consequences of concussion.  After realizing early in his career that concussion, or mild traumatic brain injury (TBI), was a much more serious event than broadly appreciated, Dr. Smith and his team have used computer biomechanical modeling, in vitro and in vivo testing in parallel with seminal human studies to elucidate mechanisms of concussion.”

Read the full story in Penn Medicine Communications.

Through Brain Imaging Analysis in Rats, Penn Researchers Show Potential to Predict Whether Pain Will be Acute or Persistent

Beth Winkelstein, Megan Sperry, and Eric Granquist

Pain may be a universal experience, but what actually causes that experience within our brains is still poorly understood. Pain often continues long after the relevant receptors in the body have stopped being stimulated and can persist even after those receptors cease to exist, as is the case with “phantom limb” pain.

The exact experience an individual will have after a painful incident comes down to the complex, variable connections formed between several different parts of the brain. The inability to predict how those connections will form and evolve can make pain management a tricky, frustrating endeavor for both healthcare providers and patients.

Now, a team of Penn researchers has shown a way to make such predictions from the pattern of neural connections that begin to take shape soon after the first onset of pain. Though their study was conducted in rats, it suggests that similar brain imaging techniques could be used to guide treatment decisions in humans, such as which individuals are most likely to benefit from different drugs or therapies.

The study, published in the journal Pain, was led by Beth Winkelstein, Eduardo D. Glandt President’s Distinguished Professor in Penn Engineering’s Department of Bioengineering and Deputy Provost of the University of Pennsylvania, along with Megan Sperry, then a graduate student in her lab. Eric Granquist, Director of the Center for Temporomandibular Joint Disease at the Hospital of the University of Pennsylvania in the Department of Oral & Maxillofacial Surgery, and assistant professor of Oral & Maxillofacial Surgery in Penn’s School of Dental Medicine, also contributed to the research.

“Our findings provide the first evidence that brain networks differ between acute and persistent pain states, even before those different groups of rats actually show different pain symptoms,” says Winkelstein.

Read the full story at Penn Engineering Today. Media contact Evan Lerner.

Brianne Connizzo Appointed Assistant Professor at Boston University

by Mahelet Asrat

Brianne Connizzo, PhD

The Department of Bioengineering is proud to congratulate alumna Brianne Connizzo, PhD on her appointment as a tenure-track Assistant Professor in the Department of Biomedical Engineering in the College of Engineering at Boston University. Connizzo’s appointment will begin in January 2021, after completing her work as a postdoctoral researcher in Biological Engineering at MIT under the supervision of Alan J. Grodzinsky, ScD, Professor of Biological, Electrical, and Mechanical Engineering.

Connizzo got her BS in Engineering Science from Smith College (the first all women’s engineering program in the country) where she graduated in 2010 with highest honors. During her time there, she worked in the laboratory of Borjana Mikic, Rosemary Bradford Hewlett 1940 Professor of Engineering. While working in the lab, she explored the role of myostatin deficiency on Achilles tendon biomechanics and built mechanical testing fixtures for submerged testing of biological tissues. Connizzo continued along this path during her graduate studies in Bioengineering at Penn while working with Louis J. Soslowsky, Fairhill Professor in Orthopaedic Surgery and Professor in Bioengineering, at the McKay Orthopaedic Research Laboratory. Her thesis work focused on the dynamic re-organizations of collagen during tendon loading in the rotator cuff, developing a novel AFM-based method for measuring collagen fibril sliding along the way. During her time at Penn, Connizzo also served as the Social Chair for the Graduate Association of Bioengineers (GABE) and the Graduate Student Engineering Group (GSEG), both of which play a vital role in representing graduate students across the School of Engineering and Applied Sciences. She completed her PhD in Bioengineering in 2015 and then pursued her postdoctoral studies at MIT, focusing on fluid flow during compressive loading and developing novel explant culture models to explore real-time extracellular matrix turnover. For her work she was awarded both an NIH F32 postdoctoral fellowship and the NIH K99/R00 Pathway Independence Award, which are just a few of her long list of impressive accomplishments.

Although Connizzo’s interests in soft tissue mechanobiology span development, injury, and disease, her more recent work has targeted how aging influences tendon function and biology. With a fast-growing active and aging population, she believes that identifying the cause and contributors of age-related changes is critical to finding treatments and therapies that could prevent tendon disease, and thus improve overall population healthspan and quality of life. The primary objectives of the Connizzo Lab at Boston University will be to harness novel in vitro and in vivo models to study cell-controlled extracellular matrix remodeling and tissue biomechanics and to better understand normal tendon maintenance and the initiation of tendon damage in the context of aging.

“I am so grateful to have had the guidance of my mentors and peers at Penn during my doctoral studies, and even more thankful that many of those relationships remain a significant part of my support system to this day,” Connizzo says. “I’m really looking forward to this next chapter to all the successes and failures in pursuing the science, to building a community at BU and in my own laboratory, and to supporting the next generation of brilliant young scientists.”

Congratulations Dr. Connizzo from everyone at Penn Bioengineering!

Brian Litt Receives NIH Pioneer Award to Develop Implantable Neurodevices

Brian Litt, MD

Brian Litt, professor in Engineering’s Department of Bioengineering and the Perelman School of Medicine’s departments of Neurology and Neurosurgery, has received a five-year, $5.6 million Pioneer Award from the National Institutes of Health, which will support his research on implantable devices for monitoring, recording and responding to neural activity.

The Pioneer Award is part of the agency’s High-Risk, High-Reward Research Program honoring exceptionally creative scientists. It challenges investigators to pursue new research directions and develop groundbreaking, high-impact approaches to a broad area of biomedical or behavioral science. Litt’s neurodevice research represents a new frontier in addressing a wide variety of neurological conditions.

In epilepsy, for example, these devices would predict and prevent seizures; in Parkinson’s patients, implants will measure and communicate with patients to improve mobility, reduce tremor and enhance responsiveness. Other implants might improve hearing or psychiatric symptoms by querying patient perceptions, feelings, and altering stimulation patterns algorithmically to improve them

Continue reading about Litt’s Pioneer Award at Penn Medicine News.

New Research from Penn Engineering and MIT Shows How Nanoparticles Can Turn Off Genes in Bone Marrow

Michael Mitchell
Michael Mitchell, PhD

by Evan Lerner

Using specialized nanoparticles, researchers from Penn Engineering and the Massachusetts Institute of Technology (MIT) have developed a way to turn off specific genes in cells of bone marrow, which play an important role in producing blood cells. These particles could be tailored to help treat heart disease or to boost the yield of stem cells in patients who need stem cell transplants.

This type of genetic therapy, known as RNA interference, is usually difficult to target to organs other than the liver, where nanoparticles would tend to accumulate. The researchers were able to modify their particles in such a way that they would accumulate in the cells found in the bone marrow.

In a recent Nature Biomedical Engineering study, conducted in mice, the researchers showed that they could use this approach to improve recovery after a heart attack by inhibiting the release of bone marrow blood cells that promote inflammation and contribute to heart disease.

“If we can get these particles to hit other organs of interest, there could be a broader range of disease applications to explore, and one that we were really interested in in this paper was the bone marrow. The bone marrow is a site for hematopoiesis of blood cells, and these give rise to a whole lineage of cells that contribute to various types of diseases,” says Michael Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, one of the lead authors of the study.

Marvin Krohn-Grimberghe, a cardiologist at the Freiburg University Heart Center in Germany, and Maximilian Schloss, a research fellow at Massachusetts General Hospital (MGH), are also lead authors on the paper, which appears today in Nature Biomedical Engineering. The paper’s senior authors are Daniel Anderson, a professor of Chemical Engineering at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and Matthias Nahrendorf, a professor of Radiology at MGH.

Mitchell’s expertise is in the design of nanoparticles and other drug delivery vehicles, engineering them to cross biological barriers that normally block foreign agents. In 2018, he received the NIH Director’s New Innovator Award to support research on delivering therapeutics to bone marrow, a key component of this new study.

The researchers have shown they can deliver nanoparticles to the bone marrow, influencing their function with RNA silencing. At top right, the bone marrow is not yet treated with particles that turn off a gene called SDF1. At bottom right, the number of neutrophils (blue) decreases, indicating that they have been released from bone marrow after treatment. At left, treatment with a control nanoparticle does not affect the number of neutrophils before and after treatment.

Read the full story at Penn Engineering Today.

In Memoriam: David Geselowitz, 1930-2020

David Geselowitz

Penn Engineering mourns the death of our former colleague Dr. David Geselowitz, who died on August 22, 2020. The Penn Engineering and Penn State communities have lost a brilliant scientist and researcher, and an extraordinary teacher, mentor and friend.

Dr. Geselowitz was born in Philadelphia in 1930, and graduated from the University of Pennsylvania, where he received his bachelor’s, master’s and doctoral degrees in Electrical Engineering in 1951, 1954 and 1958, respectively. As the top student in his undergraduate class, he received the Atwater Kent Award.

After receiving his Ph.D., he joined the faculty of the University of Pennsylvania and subsequently founded Penn’s doctoral program in biomedical engineering. In 1971, he moved to Penn State University to implement a graduate program in bioengineering.

Dr. Geselowitz was known for his contributions to the theory of the electrocardiogram (EKG) and the development of the artificial heart. As noted by the late Dr. Herman Schwan, “David was the best man I had met in electrocardiography work. The National Academy of Engineering recognized him for that work. He became a leader in the country in the field.”

For more on the life of Dr. Geselowitz, please see the tribute from his longtime colleagues at Penn State: https://news.engr.psu.edu/2020/geselowitz-david-obituary.aspx

This story originally appeared in Penn Engineering News.

César de la Fuente on AIChE’s 35 Under 35 List

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering, was named one of the American Institute of Chemical Engineers’ (AIChE) 35 members under 35 for 2020.

“The AIChE 35 Under 35 Award was founded to recognize young chemical engineers who have achieved greatness in their fields,” reads the 2020 award announcement. “The winners are a group of driven, engaged, and socially active professionals, representing the breadth and diversity that chemical engineering exemplifies.”

De la Fuente was named in the list’s “Bioengineering” category for his his lab’s work in machine biology. Their goal is to develop computer-made tools and medicines that will combat antibiotic resistance. De la Fuente has already been featured on several other young innovators lists, including MIT Technology Review’s 35 under 35 and GEN’s Top 10 under 40, both in 2019. His research in antibiotic resistance has been profiled in Penn Today and Penn Engineering Today, and he was recently awarded Penn Health-Tech’s inaugural NEMO Prize for his proposal to develop paper-based COVID diagnostic system that could capture viral particles on a person’s breath.

In addition to being named on the 2020 list, the honorees will receive a $500 prize and will be celebrated at the 2020 AIChE Annual Meeting this November.

Learn more about de la Fuente’s pioneering research on his lab website.

Penn Bioengineering’s Tsourkas Lab and Penn Start-up AlphaThera Awarded $667,000 SBIR Phase II Grant to Improve COVID-19 Detection Assays

To combat the COVID-19 pandemic caused by the SARS-CoV2 virus, Dr. Andrew Tsourkas’s Targeted Imaging Therapeutics and Nanomedicine (Titan) Lab in Penn Bioengineering, in collaboration with the Penn-based startup, AlphaThera, was recently awarded a $667,000 SBIR Phase II Grant Extension to support its efforts in commercializing COVID-19 detection technology. The grant supports work to address the growing need for anti-viral antibody testing. Specifically, the Tsourkas Lab and AlphaThera hope to leverage their expertise with antibody conjugation technologies to reduce the steps and complexity of existing detection assays to enable greater production and higher sensitivity tests. AlphaThera was founded in 2016 by Andrew Tsourkas, PhD, Professor of Bioengineering and James Hui, MD, PhD, a graduate of the Perelman School of Medicine and Penn Bioengineering’s doctoral program.

During this pandemic it is crucial to characterize disease prevalence among populations, understand immunity, test vaccine efficacy and monitor disease resurgence. Projections have indicated that millions of daily tests will be needed to effectively control the virus spread. One important testing method is the serological assay: These tests detect the presence of SARS-CoV2 antibodies in a person’s blood produced by the body’s immune system responding to infection. Serological tests not only diagnose active infections, but also establish prior infection in an individual, which can greatly aid in forecasting disease spread and contact tracing. To perform the serological assays for antibody detection, well-established immunoassay methods are used such as ELISA.

A variety of issues have slowed the distribution of these serological assays for antibody testing. The surge in demand for testing has caused shortages in materials and reagents that are crucial for the assays. Furthermore, complexity in some of the assay formats can slow both production and affect the sensitivity of test results. Recognizing these problems, AlphaThera is leveraging its novel conjugation technology to greatly improve upon traditional assay formats.

With AlphaThera’s conjugation technology, the orientation of antibodies can be precisely controlled so that they are aligned and uniformly immobilized on assay detection plates. This is crucial as traditional serological assays often bind antibodies to plates in a non-uniform manner, which increases variability of results and reduces sensitivity. See Fig 1 below. With AlphaThera’s uniform antibody immobilization, assay specificity could increase by as much as 1000- fold for detection of a patient’s SaRS-CoV2 antibodies.

Fig 1: Uniform vs Non-Uniform Immobilized Antibodies on Surface: Top is AlphaThera improvement, showing how antibodies would be uniformly immobilized and oriented on a plate for detection. Bottom is how many traditional serological assays immobilize antibodies, resulting in variability of results and lower specificity.

Furthermore, AlphaThera is addressing the shortage of assay reagents, specifically secondary antibody reagents, by removing certain steps from traditional serological assays. Rather than relying on secondary antibodies for detection of the patient antibodies, AlphaThera’s technology can label the patient SaRS-CoV2 primary antibodies directly in serum with a detection reagent. This eliminates several processing steps, reducing the time of the assay by as much as 50%, as well as the costs.

The Tsourkas Lab and AlphaThera have initiated their COVID-19 project, expanding into the Pennovation Center and onboarding new lab staff. Other antibody labeling products have also become available and are currently being prepared for commercialization. Check out the AlphaThera website to learn more about their technology at https://www.alphathera.com.

NIH SBIR Phase II Grant Extension— 5-R44-EB023750-03 (PI: Yu)  — 10/07/2020 – 10/07/2021