Burdick Recognized by NIH in Two Programs

Burdick
Jason Burdick, Ph.D.

Jason Burdick, Ph.D., professor in the Department of Bioengineering, was among the recent recipients of a grant from Sharing Partnership for Innovative Research in Translation (SPIRiT), a pilot grant program awarded by the Clinical and Translational Science Award (CTSA) division of the National Institutes of Health (NIH).

Dr. Burdick’s research, undertaken with Albert Sinusas, MD, of Yale, concerns the development of a noninvasive treatment to limit the damage to the heart caused by heart attacks, which are suffered annually by almost 750,000 Americans. Using single-photo emission computed tomography (SPECT), the technique identifies the damaged heart muscle on the basis of enzymes activated by damage, followed by the targeted administration of bioengineered hydrogels for the delivery of therapeutics

Dr. Burdick says, “This research has the potential to advance treatments for the many individuals with heart attacks who have few current options. Our approach uses injectable materials and advanced imaging techniques to address the changes in protease levels after heart attacks that can lead to tissue damage.”

In other news, Dr. Burdick was one of 12 researchers named by the NIH’s Center for Engineering Complex Tissues to lead collaborative projects aimed at generating complex tissues for several parts of the body.

Organ-on-a-Chip Earns Big CRI Grant for Huh Lab

CRI grant Huh
Dan Huh, Ph.D.

As we reported earlier, Dan Huh, Wilf Family Term Chair & Assistant Professor in the Department of Bioengineering, has been awarded a $1 million grant from the Cancer Research Institute (CRI), along with its first CRI Technology Impact Award.

Recently, the Penn Engineering Blog featured a story on Dr. Huh’s grant and the research it will support for the next three years. You can read the story at the SEAS blog.

Congratulations again to Dr. Huh!

Chow Wins NIH Grant for Brain Study

Chow R01
Brian Chow, Ph.D.

The National Institutes of Health (NIH) has awarded a grant to Brian Chow, Ph.D., an assistant professor in the Department of Bioengineering, to study ultrafast genetically encoded voltage indicators (GEVIs). GEVIs are proteins that can detect changes in the electrical output of cells and report those changes by emitting different color light. His research seeks to create GEVIs that can report these changes much more rapidly – in fact, more than a million times more quickly than the velocity of the changes themselves – and apply these ultrafast GEVIs to the study of the brain.

The NIH-funded research will build on earlier research, employing de novo fluorescent proteins (dFPs) created in Dr. Chow’s lab. These dFPs, which are totally artificial and unrelated to natural proteins, report voltage changes in neurons by changing in brightness. Working with a team of investigators that includes faculty members from the Departments of Biochemistry & Biophysics and Neuroscience, Dr. Chow hopes to develop these ultrafast GEVIs.

“Monitoring thousands of neurons in parallel will shed new light on cognition, learning and memory, mood, and the physiological underpinnings of nervous system disorders,” he says.

Dan Huh Receives $1M CRI Grant to Study Cancer

CRI huh
Dan Huh, Ph.D.

Dan Huh, Wilf Family Term Assistant Professor in the Penn Department of Bioengineering, has received the Cancer Research Institute (CRI) Technology Impact Award. Dr. Huh, whose research attempts to model cancer-immune cell interactions in microphysiological systems, will receive $1 million over the next three years for direct costs of his research.

“This award will provide us with an exciting opportunity to explore the potential of our organ-on-a-chip technology for the study of cancer immunotherapy, which is one of the most promising yet poorly understood clinical strategies for cancer treatment,” Dr. Huh said. “I am honored to receive this major award and excited with the prospect of contributing to this rapidly emerging area of medicine using innovative bioengineering technologies.”

Join us in congratulating Dr. Huh!

SockRocker Aims to Rehab Sprained Ankles

Ankle sprains are among the most common injuries suffered. Not only do 23,000 sprains occur annually, but nearly two-thirds of people with sprained ankles don’t finish their rehabilitation programs, and more than one-third will sprain the same ankle again. A senior design project team that addressed this topic was one of this year’s three winners: the SockRocker

SockRocker
The SockRocker

Among the problems with the currently available rehab technologies are issues of effectiveness, lack of personalization, and poor accessibility. The team — which consisted of Aras Fanuscu, Andrea Frank, David Hernandez, and Angel Xiao — sought to address these issues, coming up with the SockRocker (right). The device, which cost approximately $350 to produce, combines targeted muscle therapy, individualized physician input, and a universal design. The patient places his/her foot into the SockRocker and is then able to move the ankle 30° in either direction, thus strengthening the injured joint. In a pilot study, the design team found that the SockRocker rated 4.8 out of 5 for comfort. In addition, the device is fully portable and can run on 24-volt battery for one month.

Going forward, the team hopes that the SockRocker can be tested clinically to determine its long-term efficacy. According to Timothy Dillingham, MD, MS, chair of the Department of Physical Medicine and Rehabilitation in the Perelman School of Medicine, the device has potential to close “an unfortunate gap in our clinical rehabilitation and management” of patients with ankle sprains.

Margulies Among Recipients of Award to Study Concussions

How can physicians and engineers help design athletic equipment and diagnostic tools to better protect teenaged athletes from concussions? A unique group of researchers with neuroscience, bioengineering and clinical expertise are teaming up to translate preclinical research and human studies into better diagnostic tools for the clinic and the sidelines as well as creating the foundation for better headgear and other protective equipment.

concussions margulies
Susan Margulies, PhD

The study will be led by three coinvestigators: Susan Margulies, the Robert D. Bent Professor of Bioengineering at the University of Pennsylvania’s School of Engineering and Applied Science (right); Kristy Arbogast, co-scientific director of the Center for Injury Research and Prevention at the Children’s Hospital of Philadelphia; and Christina Master, a primary care sports medicine specialist and concussion researcher at CHOP. They will use a new $4.5 million award from the National Institute of Neurological Disorders and Stroke.

The five-year project focuses specifically on developing a suite of quantitative assessment tools to enhance accuracy of sports-related concussion diagnoses, with a focus on objective metrics of activity, balance, neurosensory processing, including eye tracking, and measures of cerebral blood flow. These could also provide prognoses of the time-to-recovery and safe return-to-play for youth athletes. Researchers will examine such factors such as repeated exposures and direction of head motion. In addition, they will also look at sex-specific data to see how prevention and diagnosis strategies need to be tailored for males and females.

The multidisciplinary research team believes this study will result in post-concussion metrics that can provide objective benchmarks for diagnosis, a preliminary understanding of the effect of sub-concussive hits, the magnitude and direction of head motion and sex on symptom time course, as well as markers in the bloodstream that relate to functional outcomes.

Knowing the biomechanical exposure and injury thresholds experienced by different player positions can help sports organizations tailor prevention strategies and companies to create protective equipment design for specific sports and even specific positions.

The study will enroll research participants from The Shipley School, a co-ed independent school in suburban Philadelphias, and from CHOP’s Concussion Care for Kids: Minds Matter program which annually sees more than 2,500 patients with concussion in the Greater Delaware Valley region.

The study is funded by the National Institutes of Health.

Allen Foundation Awards Major Grant to Study Concussions

Faculty members in the Department of Bioengineering at the University of Pennsylvania are among the recipients of a major $9.25 million grant from the Paul G. Allen Family Foundation to study the mechanism underlying concussion and to investigate possible interventions.

allen foundation meaneyallen foundation smith

 

 

 

 

 

 

David Meaney, PhD, Solomon R. Pollack Professor and Chair of the Bioengineering Department (above left), is one of two principal investigators, with Douglas H. Smith, MD,  professor of neurosurgery at Penn’s Perelman School of Medicine (above right). In addition, Danielle S. Bassett, PhD, Eduardo D. Glandt Faculty Fellow and Associate Professor (below left), Dongeun (Dan) Huh, PhD, Wilf Family Term Assistant Professor (below center), and David Issadore, PhD, assistant professor (below right), all of BE Department, are co-investigators. The Allen Foundation grant also involves investigators from Columbia University (Barclay Morrison, Ph.D.), Duke University (Cameron Bass, Ph.D.), and Children’s Hospital of Philadelphia (Akiva Cohen, Ph.D.).

allen foundation bassettallen foundation huhallen foundation issadore

Selected from a large national pool of applicants, the Allen Foundation grant will bring together new technology platforms developed by Drs. Huh and Issadore to study how concussions occur at the microtissue scale and release markers of rewiring  during recovery. Network theory models from Dr. Bassett’s group will provide an entirely new view on how concussion recovery occurs at all scales in the brain. The overall impact of the project will be to move away from the widely held perspective that all concussions should be treated identically and towards a view that concussions can follow several recovery pathways, some of which must be monitored closely in the days to weeks following injury.

Pressure Sores Targeted by Flysole

Among the myriad medical complications caused by diabetes, pressure sores of the feet are among the most troubling. Because of the common  complication of peripheral neuropathy, people with diabetes are often unable to determine how much pressure is being exerted on their feet. As a result, they cause foot ulcers, which can become infected, leading in the worst cases to amputation.

pressure sores
The Flysole combines an insole with five sensors (top) and an ankle band (bottom) to house the electrical components, including the circuit for the pressure sensors as well as the microcontroller and SD card to log the pressure data.

One of the senior design teams from the Department of Bioengineering at the University of Pennsylvania developed a project to address this problem. Their solution was Flysole (right), a prognostic implant that diabetic patients can wear to collect data on foot pressure so that the doctor can prescribe an optimal orthotic to prevent sores from developing. The team was named one of the three winners of this year’s competition.

The team, which consisted of Parag Bapna, Karthik Ramesh, Jane Shmushkis, and Amey Vrudhula, designed the Flysole as a lightweight insole with ankle band paired with software that generates a profile of the pressure on the sole of the patient’s foot. The insole has five sensors to collect these data. The cost is approximately $75 per pair.

In addition, the team made the Flysole to be reusable by including a polyurethane laminate sleeve for the individual patient. Future improvements envisioned by the students include improving the software to include recommendations for orthotics and alternate arrangements for the sole sensors.

Students Receive Awards for the Year

students receiving awards
Students in the BE Department have received several awards

Every year the Penn Bioengineering Department presents several awards to students. In addition to the Senior Design Awards, which will be featured over the course of the month, students were awarded for their service, originality, leadership, and scholarship.

The Hugo Otto Wolf Memorial Prize, endowed more than a century ago by the Philadelphia architect Otto Wolf, in memory of his son, was given to Margaret Nolan and Ingrid Lan. The Herman P. Schwan Award, named for a former faculty member in Bioengineering, was given to Elizabeth Kobe and Lucy Chai.

The Albert Giandomenico Award, presented to four students who “reflect several traits that include teamwork, leadership, creativity, and knowledge applied to discovery-based learning in the laboratory,” was given to Justin Averback, Jake Budlow, Justin Morena, and Young Shin.

In addition, Sushmitha Yarrabothula received the Bioengineering Student Leadership Award and four students — Hayley Williamson, Amey Vrudhula, Jane Shmushkis, and Ikshita Singh, won the Penn Engineering Exceptional Service Award.

Finally, the Biomedical Applied Science Senior Project Award, presented annually to the students who have “best demonstrated originality and creativity in the integration of knowledge,” was awarded to Derek Yee and Andrea Simi.

“These awards recognize many aspects of our students: their high academic achievement,  exceptional collaborative spirit, and leadership abilities,” said BE department chair David Meaney. “However, these traits are not limited to the only these students. Every single one of our undergraduates at Penn pushes themselves well beyond the classroom and into the community to make a unique difference.”

Dan Huh Receives Ryan Medal

Ryan Medical recipient Dan Huh
Professor Dan Huh

A professor in the Penn Department of Bioengineering, Dongeun (Dan) Huh, PhD, has been awarded the John J. Ryan Medal, which is given annually by the Royal College of Surgeons in Ireland (RCSI).

Every year this honor recognizes a scientist who has made major contributions to developing innovative biomedical technologies with the potential to have a broad impact on the life sciences. Dr. Huh, who is Wilf Family Term Endowed Chair in the BE Department, received the medal at an RCSI Research Retreat on March 9 on the RCSI campus in Dublin, and he delivered the John J. Ryan Distinguished Lecture.

“As an engineer, I am honored to have been selected by a group of biologists and clinicians for this prestigious award that recognizes significant contributions to biomedical research,” Professor Huh said. “It is truly rewarding and encouraging to experience strong support and enthusiasm for our pursuit of innovative biomedical technologies.”