Three recent Penn Bioengineering graduates took home the Best Application Award from the Medical Robotics for Contagious Disease Challenge, part of the three-month Hamlyn Symposium on Medical Robotics. Organized by the Hamlyn Centre at Imperial College, London, UK, in collaboration with the UK-RAS Network, the challenge involved “creating a 2-minute video of robotic or AI technology that could be used to tackle contagious diseases” in response to the current and potential future pandemics. Yasmina Al Ghadban, Rob Paslaski, and Phuong Vu were members of the Penn Bioengineering senior design team rUmVa who designed and built a cost-effective, autonomous robot that can quickly disinfect rooms by intelligently sanitizing high-touch surfaces and the air. The Best Application Award comes with a prize of £5,000.
Team rUmVa, which also included Bioengineering seniors Rachel Madhogarhia and Jeong Inn Park, also received a Berkman Opportunity fund grant from Penn Engineering and was one of three teams to win Penn Bioengineering’s Senior Design competition. Senior Design work is conducted every year on-site in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (which successfully reopened for in-person activities this Spring semester). Read the full list of Spring 2021 Senior Design Award Winners here.
rUmVa and the other challenge winners were honored during the Hamlyn Symposium’s virtual closing ceremony on July 29, 2021.
Read rUmVa’s abstract and final papers, along with those of all of the Penn Bioengineering Teams’, on the BE Labs Senior Design 2021 website. rUmVa’s presentation can be viewed on Youtube:
Penn Bioengineering alumnus Jackson Foster (BSE 2014) was included in the Los Angeles Business Journal’s 2021 “20 in Their 20s” list, recognizing rising entrepreneurial stars of L.A.’s business community. Foster is the Founder and Chief Executive of the San Francisco-based Edily Learning, an education technology company which has created an app focused on education, learning goals, and personalized content using a TikTok-like algorithm.
After completing his bachelor’s degree, Foster earned his M.B.A in Business Administration and Management at the UCLA Anderson School of Management.
Jenny Jiang, the Peter & Geri Skirkanich Associate Professor of Innovation in the department of Bioengineering, has received a Lloyd J. Old STAR Program grant from the Cancer Research Institute (CRI), which is a major supporter of cancer immunotherapy research and clinical trials with the goal of curing all types of cancer.
The CRI Lloyd J. Old Scientists Taking Risks (STAR) Program “provides long-term funding to mid-career scientists, giving them the freedom and flexibility to pursue high-risk, high-reward research at the forefront of discovery and innovation in cancer immunotherapy.” This prestigious grant was give to six awardees this year, chosen from a pool of hundreds of applicants, and recognizes “future leaders in the field of cancer immunotherapy [who are expected to] carry out transformational research.”
The Old STAR Program Grant comes with $1.25 million in funding over 5 years to support the awardees’ cancer immunology research.
Jiang, who recently joined Penn Bioengineering, is a pioneer in developing tools in genomics, biophysics, immunology, and informatics and applying them to study systems immunology and immune engineering in human diseases. She was also inducted into the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows in March 2021 for her outstanding contributions to the field of systems immunology and immunoengineering and devotion to the success of women in engineering. Jiang’s research focuses on systems immunology by developing technologies that enable high-throughput, high-content, single cell profiling of T cells in health and disease and she is recognized as one of the leading authorities in systems immunology and immunoengineering.
“The STAR Award from CRI allows my lab to answer some of the fundamental questions in T cell biology, such as is the T cell repertoire complete to cover all possible cancer antigens, as well as to improve the efficacy of T cell based cancer immunotherapies,” says Jiang.
A collaborative study finds that deeper regions of the brain encode visual information more slowly, enabling the brain to identify fast-moving objects and images more accurately and persistently.
by Erica K. Brockmeier
New research from the University of Pennsylvania, the Scuola Internazionale Superiore de Studi Avanzati (SISSA), and KU Leuven details the time scales of visual information processing across different regions of the brain. Using state-of-the-art experimental and analytical techniques, the researchers found that deeper regions of the brain encode visual information slowly and persistently, which provides a mechanism for explaining how the brain accurately identifies fast-moving objects and images. The findings were published in Nature Communications.
Understanding how the brain works is a major research challenge, with many theories and models developed to explain how complex information is processed and represented. One area of particular interest is vision, a major component of neural activity. In humans, for example, there is evidence that around half of the neurons in the cortex are related to vision.
Researchers are eager to understand how the visual cortex can process and retain information about objects in motion in a way that allows people to take in dynamic scenes while still retaining information about and recognizing the objects around them.
“One of the biggest challenges of all the sensory systems is to maintain a consistent representation of our surroundings, despite the constant changes taking place around us. The same holds true for the visual system,” says Davide Zoccolan, director of SISSA’s Visual Neuroscience Laboratory. “Just look around us: objects, animals, people, all on the move. We ourselves are moving. This triggers rapid fluctuations in the signals acquired by the retina, and until now it was unclear whether the same type of variations apply to the deeper layers of the visual cortex, where information is integrated and processed. If this was the case, we would live in tremendous confusion.”
Experiments using static stimuli, such as photographs, have found that information from the sensory periphery are processed in the visual cortex according to a finely tuned hierarchy. Deeper regions of the brain then translate this information about visual scenes into more complex shapes, objects, and concepts. But how this process works in more dynamic, real-world settings is not well understood.
To shed light on this, the researchers analyzed neural activity patterns in multiple visual cortical areas in rodents while they were being shown dynamic visual stimuli. “We used three distinct datasets: one from SISSA, one from a group in KU Leuven led by Hans Op de Beeck and one from the Allen Institute for Brain Science in Seattle,” says Zoccolan. “The visual stimuli used in each were of different types. In SISSA, we created dedicated video clips showing objects moving at different speeds. The other datasets were acquired using various kinds of clips, including from films.”
Next, the researchers analyzed the signals registered in different areas of the visual cortex through a combination of sophisticated algorithms and models developed by Penn’s Eugenio Pasini and Vijay Balasubramanian. To do this, the researchers developed a theoretical framework to help connect the images in the movies to the activity of specific neurons in order to determine how neural signals evolve over different time scales.
“The art in this science was figuring out an analysis method to show that the processing of visual images is getting slower as you go deeper and deeper in the brain,” says Balasubramanian. “Different levels of the brain process information over different time scales; some things could be more stable, some quicker. It’s very hard to tell if the time scales across the brain are changing, so our contribution was to devise a method for doing this.”
Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the School of Arts & Sciences and a member of the Penn Bioengineering Graduate Group at the University of Pennsylvania.
The retiring CIS professor chats about his recent ACM SIGGRAPH election and his expansive computer graphics path.
Norman Badler’selection into the 2021 ACM SIGGRAPH Academy Class is right on time. After nearly five decades of teaching and trailblazing in the Penn community, the Rachleff Family Professor in the Department of Computer and Information Sciences retired at the end of the spring semester.
When he arrived at the University in 1974, CIS itself was only about 2 years old, and there was virtually no computer graphics focus or program at all. Badler had no intention to teach it.
“At that time, I was actually a computer vision researcher, but I was also working a little bit in natural language,” says Badler. “So I was literally brought in to fit between the chair, Aravind Joshi, who was a natural language person, and the computer vision person. It wasn’t until about three or four years after I came here that I switched over to computer graphics. Mostly because there was a vacuum and a need and an excitement.”
Several years after completing his dissertation in computer vision and forming a career path to head in that direction, Badler “started getting serious about computer graphics.” An organization that was getting its start around the same time as his Penn career would play a major role: ACM SIGGRAPH (the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques).
The National Science Foundation (NSF) has awarded grants to eight research teams to support partnerships that will increase diversity in cutting-edge materials research, education, and career development. One of those teams is Penn’s Laboratory for Research on the Structure of Matter (LRSM) and the University of Puerto Rico (UPR), whose long-running collaboration has now received an additional six years of support.
With the goal of supporting partnerships between minority-serving educational institutions and leading materials science research centers, NSF’s Partnership for Research & Education in Materials (PREM) program funds innovative research programs and provides institutional support to increase recruitment, retention, and graduation by underrepresented groups as well as providing underserved communities access to materials research and education.
‘Research at the frontier’
With this PREM award, known as the Advancing Device Innovation through Inclusive Research and Education (ADIIR) program, researchers from Penn and UPR’s Humacao and Cayey campuses will conduct research on the properties of novel carbon-based materials with unique properties, and will study the effects of surface modification in new classes of sensors, detectors, and purification devices.
Thanks to this collaboration of more than 20 years, both institutions have made significant scientific and educational progress aided by biannual symposia and regular pre-pandemic travel between both institutions before the pandemic, resulting in a rich portfolio of publications, conference presentations, patents, students trained, and outreach programs.
“Together we have been publishing good papers that have impact, and we’ve really cultivated a culture of collaboration and friendship between our institutions,” says Penn’s Arjun Yodh, former director of the LRSM. “Our goal is to carry out research at the frontier and, in the process, nurture promising students from Puerto Rico and Penn.”
Ivan Dmochowski, a chemistry professor at Penn who has been involved with PREM for several years, says that this program has helped his group connect with experts in Puerto Rico whose skills complement his group’s interests in protein engineering. Dmochowski has also hosted UPR faculty members and students in his lab and also travelled to Puerto Rico before the pandemic to participate in research symposia, seminars, and outreach events.
“I’ve had students who have benefitted from being a co-author on a paper or having a chance to mentor students, and the faculty we’ve interacted with are exceptional,” Dmochowski says. “There’s a lot of benefit for both me and my students, and I’ve enjoyed our interactions both personally and scientifically.”
Penn’s Daeyeon Lee, a chemical and biomolecular engineering professor who has been involved with PREM for several years, regularly hosts students and faculty from UPR while working on nanocarbon-based composite films for sensor applications. The success of this collaboration relies on unique materials made by researchers at UPR combined with a method for processing them into composite structures developed in Lee’s lab.
“What I really admire about people at PREM, both faculty and students, is their passion,” says Lee. “I think that’s had a really positive impact on my students and postdocs who got to interact with them because they got to see the passion that the students brought.”
Susan Margulies, Professor Emeritus in Bioengineering, has been selected to lead the National Science Foundation’s (NSF) Directorate of Engineering, “the first biomedical engineer to head the directorate.” Margulies is chair of the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University. She earned her master’s and doctoral degrees from Penn Bioengineering before joining the department as an Assistant Professor in 1993.
In a press release from Emory University, Margulies stated that, “The opportunity to serve the NSF resonates with my values — catalyzing impact through innovation, rigor, partnership, and inclusion.” The announcement continues:
“Building on initiatives she developed at the University of Pennsylvania, Margulies prioritized career development for faculty and Ph.D. graduates during her years leading Coulter BME. She added dedicated staff to help doctoral students prepare for increasingly popular career paths outside of academia. The department increased the diversity of Ph.D. students and improved faculty diversity at all ranks during her tenure. Margulies oversaw hiring of 20 new faculty members and launched formalized mentoring for early career professors, including creating a new associate chair position dedicated to faculty development.”
Margulies will step down from her position as chair in Coulter BME though she will remain in the Georgia Tech and Emory faculty. Her Injury Biomechanics Lab studies “the influence of mechanical factors on the structure and function of human tissues from the macroscopic to microscopic level, with an emphasis on the brain and lungs.”
Colin Huber, a Ph.D. candidate in Bioengineering studying head impact biomechanics and concussion in sports at the Center for Injury Research and Prevention (CIRP) at the Children’s Hospital of Philadelphia (CHOP), recently published “Variations in Head Impact Rates in Male and Female High School Soccer” in Medicine & Science in Sports & Exercise with colleagues from CHOP’s Minds Matter Concussion Frontier Program and the CIRP.
Colin’s paper, the goal of which was to compare “to compare head impact exposure rates (head impacts/exposure period) in male and female high school soccer by using multiple methodological approaches,” was recently profiled in the Penn Engineering Research & Innovation Newsletter.
Shreya Parchure, a recent graduate of Penn Bioengineering, was selected by a committee of faculty for a 2021 Rose Award from the Center for Undergraduate Research and Fellowships (CURF). The Rose Award recognizes outstanding undergraduate research projects completed by graduating seniors under the supervision of a Penn faculty member and carries with it a $1,000 award. Parchure’s project, titled “BDNF Gene Polymorphism Predicts Response to Continuous Theta Burst Stimulation (cTBS) in Chronic Stroke Patients,” was done under the supervision of Roy H. Hamilton, Associate Professor in Neurology and Physical Medicine and Rehabilitation and director of the Laboratory for Cognition and Neural Stimulation in the Perelman School of Medicine. Parchure’s work in Hamilton’s lab previously resulted in a 2020 Goldwater Scholarship.
The COVID vaccines currently being deployed were developed with unprecedented speed, but the mRNA technology at work in some of them is an equally impressive success story. Because any desired mRNA sequence can be synthesized in massive quantities, one of the biggest hurdles in a variety of mRNA therapies is the ability to package those sequences into the lipid nanoparticles that deliver them into cells.
Now, thanks to manufacturing technology developed by bioengineers and medical researchers at the University of Pennsylvania, a hundred-fold increase in current microfluidic production rates may soon be possible.
The researchers’ advance stems from their design of a proof-of-concept microfluidic device containing 128 mixing channels working in parallel. The channels mix a precise amount of lipid and mRNA, essentially crafting individual lipid nanoparticles on a miniaturized assembly line.
This increased speed may not be the only benefit; more precisely controlling the nanoparticles’ size could make treatments more effective. The researchers tested the lipid nanoparticles produced by their device in a mouse study, showing they could deliver therapeutic RNA sequences with four-to-five times greater activity than those made by conventional methods.
The study was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, and David Issadore, Associate Professor in Penn Engineering’s Department of Bioengineering, along with Sarah Shepherd, a doctoral student in both of their labs. Rakan El-Mayta, a research engineer in Mitchell’s lab, and Sagar Yadavali, a postdoctoral researcher in Issadore’s lab, also contributed to the study.
They collaborated with several researchers at Penn’s Perelman School of Medicine: postdoctoral researcher Mohamad-Gabriel Alameh, Lili Wang, Research Associate Professor of Medicine, James M. Wilson, Rose H. Weiss Orphan Disease Center Director’s Professor in the Department of Medicine, Claude Warzecha, a senior research investigator in Wilson’s lab, and Drew Weissman, Professor of Medicine and one of the original developers of the technology behind mRNA vaccines.
“We believe that this microfluidic technology has the potential to not only play a key role in the formulation of current COVID vaccines,” says Mitchell, “but also to potentially address the immense need ahead of us as mRNA technology expands into additional classes of therapeutics.”