BE Seminar: “Material Design for Lymph Node Drug Delivery and Immunomodulation” (Susan Thomas)

Susan Thomas, Ph.D.

Speaker: Susan N. Thomas, Ph.D.
Woodruff Associate Professor of Mechanical Engineering
Parker H. Petit Institute of Bioengineering and Bioscience
Georgia Institute of Technology

Date: Thursday, September 23, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact
This virtual seminar will be held over Zoom. Students registered for BE 699 can gather to watch live in Moore 216, 200 S. 33rd Street.

Abstract: Lymph nodes mediate the co-mingling of cells of the adaptive system to coordinate adaptive immune response. Drug delivery principles and technologies our group has developed to leverage the potential of lymph nodes as immunotherapeutic drug targets to augment anti-cancer therapeutic effects will be described.

Susan Thomas Bio: Susan Napier Thomas is a Woodruff Associate Professor with tenure of Mechanical Engineering in the Parker H. Petit Institute of Bioengineering and Bioscience at the Georgia Institute of Technology where she holds adjunct appointments in Biomedical Engineering and Biological Science and is a member of the Winship Cancer Institute of Emory University. Prior to this appointment, she was a Whitaker postdoctoral scholar at École Polytechnique Fédérale de Lausanne and received her B.S. in Chemical Engineering cum laude from the University of California Los Angeles and her Ph.D. as in Chemical & Biomolecular Engineering as an NSF Graduate Research Fellow from The Johns Hopkins University. For her contributions to the emerging field of immunoengineering, she has been honored with the 2018 Young Investigator Award from the Society for Biomaterials for “outstanding achievements in the field of biomaterials research” and the 2013 Rita Schaffer Young Investigator Award from the Biomedical Engineering Society “in recognition of high level of originality and ingenuity in a scientific work in biomedical engineering.” Her interdisciplinary research program is supported by multiple awards from the National Cancer Institute, the Department of Defense, the National Science Foundation, and the Susan G. Komen Foundation, amongst others.

BE Seminar: “Regenerative Engineering: Enabling Regenerative Medicine” (Guillermo Ameer)

Guillermo Ameer, D.Sc.

Speaker: Guillermo Ameer, D.Sc.
Daniel Hale Williams Professor of Biomedical Engineering & Surgery
McCormick School of Engineering
Northwestern University

Date: Thursday, September 16, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact
Location: Moore Room 216, 200 S. 33rd Street

Abstract: Regenerative engineering is the convergence of advances in materials science, physical sciences, stem cell and developmental biology, and translational medicine to develop tools that enable the regeneration and reconstruction of tissue and organ function. I will describe how materials can be engineered to play a critical role in treating tissue and organ defects and dysfunction by promoting cellular processes that are conducive to regeneration. Applications of these materials to address the complications of diabetes and orthopaedic injuries will be discussed.

Guillermo Ameer Bio: Dr. Ameer is the Daniel Hale Williams professor of Biomedical Engineering and Surgery in the Biomedical Engineering Department at the McCormick School of Engineering and the Department of Surgery at the Feinberg School of Medicine, Northwestern University. He is the founding director of the Center for Advanced Regenerative Engineering (CARE) and the Director of the NIH-funded Regenerative Engineering Training Program (RE-Training). He received his bachelor’s degree in chemical engineering from The University of Texas at Austin and his doctoral degree in chemical and biomedical engineering from the Massachusetts Institute of Technology. His research interests include regenerative engineering, biomaterials, additive manufacturing for biomedical devices, controlled drug delivery and bio/nanotechnology for therapeutics and diagnostics.

Dr. Ameer’s laboratory pioneered the development and tissue regeneration applications of citrate-based biomaterials (CBB), the core technology behind the innovative bioresorbable orthopaedic tissue fixation devices CITREFIXTM, CITRESPLINETM, and CITRELOCKTM, which were recently cleared by the F.D.A for clinical use and marketed worldwide. CBBs are the first thermoset synthetic polymers used for implantable biodegradable medical devices. The co-founder of several companies, Dr. Ameer has approximately 300 publications and conference abstracts and over 55 patents issued and pending in 9 countries.

His awards include the National Science Foundation CAREER Award, the American Heart Association’s Established Investigator Award, the American Institute of Chemical Engineers (AIChE) Eminent Chemical Engineer Award, the Key to the City of Panama, induction into the Academy of Distinguished Chemical Engineers (U. Texas Mcketta Dept. of Chemical Engineering), and the Society for Biomaterials Clemson Award for Contributions to the Literature. Dr. Ameer is a Fellow of the American Institute of Medical and Biological Engineering (AIMBE), Fellow of the Biomedical Engineering Society (BMES), a Fellow of the AIChE, Fellow of the American Association for the Advancement of Science (AAAS), Fellow of the Materials Research Society, and a Fellow of the National Academy of Inventors. Dr. Ameer is an Associate Editor for the AAAS journal Science Advances and the Regenerative Engineering and Translational Medicine journal; a member of the board of directors of the Regenerative Engineering Society; past board member of BMES and AIMBE; Chair of the AIMBE Awards Committee; Chair-elect of the College of Fellows of AIMBE; and a member of the Scientific Advisory Board of Acuitive Technologies, Inc.- a company that is bringing his biomaterial technologies to the musculoskeletal surgery market.

BE Seminar: “Dynamics of 3D Cell Migration and Organ Formation” (Kenneth Yamada)

Our next Penn Bioengineering seminar will be held on zoom next Thursday.

Kenneth Yamada, MD, PhD

Speaker: Kenneth Yamada, M.D., Ph.D.
NIH Distinguished Investigator
Cell Biology Section
National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH)

Date: Thursday, September 9, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact
Location: Moore Room 216, 200 S. 33rd Street

Abstract: Real-time microscopy of the dynamics of cells and tissues in 3D environments is opening new windows to understanding the biophysical mechanisms of complex biological processes. Direct visualization is allowing us to explore fundamental questions in more depth that include: How do cells migrate in 3D? How do cancer cells invade? How is the extracellular matrix assembled? How are organs formed? Visualizing how cells move and organize into tissues is not only providing descriptive insights, but is also leading to the identification of novel, unexpected physical and mechanical mechanisms relevant to tissue engineering. Cells can use varying combinations of cell adhesion to adjacent cells and to the surrounding extracellular matrix with localized cellular contractility to migrate, invade, and produce the complex tissue architecture needed for organ formation.

Kenneth Yamada Bio: Kenneth Yamada has been an NIH Distinguished Investigator since 2011. He received MD and PhD degrees from Stanford. He was a Section Chief at the National Cancer Institute for 10 years and has been a Section Chief at NIDCR since 1990. He is an elected Fellow of the AAAS and American Society for Cell Biology. His research focuses on discovering novel mechanisms and regulators of cell interactions with the extracellular matrix and their roles in embryonic development and cancer. His research group focuses on the mechanisms by which three-dimensional (3D) extracellular matrix mediates key biological events, including cell migration, tissue morphogenesis, and cancer cell invasion. His research places particular emphasis on characterizing the dynamic movements of cells and their extracellular matrix as tissues are remodeled in 3D in real time. The biological systems they study include human primary cells migrating in 3D, human tumor cells and tissues, and mouse organ development. He places particularly high priority on developing future independent research leaders.

BE Seminar: “Synthetic Biochemistry: Engineering Molecules and Pathways for Precision Medicine” (Michael Lin)

Save the date for the first Penn Bioengineering seminar of the fall 2021 semester! This year’s seminars will be hybrids, held virtually on zoom and live on campus!

Michael Lin, Ph.D.

Speaker: Michael Lin, Ph.D.
Associate Professor
Neurobiology, Bioengineering, and by courtesy Chemical and Systems Biology
Stanford Medicine, Stanford University

Date: Thursday, September 2, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact
Location: Moore Room 216, 200 S. 33rd Street

Abstract: The most effective medicines are those that target the earliest causes of disease, rather than later manifestations. Engineering of biomolecules is a promising but underexplored approach to precisely detecting or targeting disease causes. I will present our work to develop a novel approach to treating cancer by detecting the signaling abnormalities that give rise to cancer. Interestingly, this effort involves biomolecular engineering at multiple scales: proteins, pathways, and viruses. I will also discuss how our work has translated serenditously to developing treatments for SARSCoV2.

Michael Lin Bio: Michael Z. Lin received an A.B. summa cum laude in Biochemistry from Harvard, an M.D. from UCLA, and a Ph.D. from Harvard Medical School. After training in biochemistry and neurobiology as a PhD student with Michael Greenberg at Harvard Medical School, Dr. Lin performed postdoctoral research in fluorescent protein engineering with Chemistry Nobel Laureate Roger Y. Tsien at UCSD. Dr. Lin is a recipient of a Burroughs Wellcome Career Award for Medical Scientists, a Rita Allen Scholar Award, a Damon Runyon-Rachleff Innovation Award, and a NIH Pioneer Award.

BE Seminar: “Promoting Appendage/Limb Regeneration in Jellyfish, Drosophila, and Mouse” (Lea Goentoro)

We hope you will join us for our final seminar of the spring semester!

Speaker: Lea Goentoro, Ph.D.
California Institute of Technology

Date: Thursday, April 22, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact

Abstract: Can limb regeneration be induced? In this talk, I will discuss our work to promote regeneration in animals with limited regeneration capacity. I will present our recent discovery of a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.

Lea Goentoro Bio: Lea Goentoro is a Professor of Biology in the Division of Biology and Biological Engineering at the California Institute of Technology. She holds a B.S. in Chemical Engineering from University of Wisconsin, Madison and a Ph.D. in Chemical Engineering from Princeton University. Prior to joining Caltech, she did postdoctoral training in the Department of Systems Biology at Harvard Medical School. Her work has been supported by the Damon-Runyon Cancer Foundation, the James S. McDonnell Foundation, the National Science Foundation, and the National Institute of Health.

BE Seminar: “Understanding Spatiotemporal Cell Reprogramming for Precision Medicine” (Xiling Shen)

Xiling Shen, Ph.D.

Speaker: Xiling Shen, Ph.D.
Hawkins Family Associate Professor
Biomedical Engineering
Duke University

Date: Thursday, April 15, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact


Bodily cells undergo transformations in space and time during development, disease progression, and therapeutic treatment. A holistic approach that combines engineering tools, patient-derived models, and analytical methods is needed to map cellular reprogramming and expose new therapeutic opportunities. The talk will cover our effort across the entire spectrum from bench to bedside, including organogenesis during embryonic development, epigenetic and metabolic reprogramming of cancer metastasis and COVID-19 patients, and organoid technology to guide precision- and immune-oncology.

Xiling Shen Bio:

Dr. Shen is the Hawkins Family Associate Professor in the Department of Biomedical Engineering at Duke University. He is also the director of the Woo Center for Big Data and Precision Health. He received his BS, MS, and PhD degrees from Stanford University and the NSF career award at Cornell University. He is the steering committee chair of the NCI Patient-Derived Model of Cancer Consortium. His lab studies precision medicine from a systems biology perspective. Areas of interests include cancer, stem cells, the but-brain axis, and infectious diseases.

BE Seminar: “Reaction-Coupled Solid-State Nanopore Digital Counting: Towards Sensitive, Selective and Fast Nucleic Acid Testing” (Weihua Guan)

Weihua Guan, PhD

Speaker: Weihua Guan, Ph.D.
Assistant Professor
Department of Electrical Engineering & Department of Biomedical Engineering (courtesy)
Pennsylvania State University, University Park

Date: Thursday, April 8, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact


Due to their conceptual simplicity, the nanopore sensors have attracted intense research interest in electronic single molecule detection. While considerable success has been achieved, the solid-state nanopores still face three significant challenges, including repeatable nanopore size control, introduction sensing specificity, and prolonged sensor response time at low concentrations. In this talk, I will discuss a calibration-free solid-state nanopore counting method and two representative applications in nucleic acid testing. One is an isothermal amplification-coupled nanopore counting for malaria analysis. The other is the CRISPR-cas12a-coupled nanopore counting for HIV analysis. Finally, I will also discuss how we can develop a fully integrated ‘sample-to-result’ nucleic acid testing device using the solid-state counting strategy. I believe the reaction-coupled solid-state nanopore digital counting could open a new avenue towards compact, robust, low-cost electronic nucleic acid testing at the point of care.

Weihua Guan Bio:

Weihua Guan received his Ph.D. degree in Electrical Engineering from Yale University in 2013 and did his postdoctoral training at Johns Hopkins University from 2013 to 2014. He joined the Department of Electrical Engineering at Pennsylvania State University in Jan 2015. He also held a courtesy appointment in the Department of Biomedical Engineering at Penn State. Dr. Guan’s research interests are in the multidisciplinary areas of micro- and nanotechnology, micro/nanofluidics, bioMEMS, lab-on-a-chip devices, and point-of-care devices. Dr. Guan’s research group at Penn State focuses on developing micro and nanoscale devices as well as novel sensing principles towards advanced medical diagnostics and testing. Dr. Guan is a member of IEEE, Engineering in Medicine and Biology Society, Biophysical Society, and American Physics Society. Among other honors, Dr. Guan is a recipient of the HHMI International Research Fellowship and NSF CAREER award.

“This is What a Data Scientist Looks Like”

Speakers at the second annual Women in Data Science @ Penn Conference.

Last month, the second annual Women in Data Science (WiDS) @ Penn Conference virtually gathered nearly 500 registrants to participate in a week’s worth of academic and industry talks, live speaker Q&A sessions, and networking opportunities.

Hosted by Penn Engineering, Analytics at WhartonWharton Customer Analytics and Wharton’s Statistics Department, the conference’s theme — “This is What a Data Scientist Looks Like” – emphasized the depth, breadth, and diversity of data science, both in terms of the subjects the field covers and the people who enter it.

Following welcoming remarks from Erika James, Dean of the Wharton School, and Vijay Kumar, Nemirovsky Family Dean of Penn Engineering, the conference began with a keynote address from President of Microsoft US and Wharton alumna Kate Johnson.

Conference sessions continued throughout the week, featuring panels of academic data scientists from around Penn and beyond, industry leaders from IKEA Digital, Facebook and Poshmark, and lightning talks from students speakers who presented their data science research.

All of the conference’s sessions are now available on YouTube and the 2021 WiDS Conference Recap, including a talk titled “How Humans Build Models for the World” by Danielle Bassett, J. Peter Skirkanich Professor in Bioengineering and Electrical and Systems Engineering.

Read more about the conference at Wharton Stories: “How Women in Data Science Rise to the Top.

Originally posted in Penn Engineering Today.

BE Seminar: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia” (Emery Brown)

Emery Brown, MD, PhD

Speaker: Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering and of Computational Neuroscience, MIT
Warren M. Zapol Professor of Anaesthesia, Harvard Medical School
Massachusetts General Hospital

Date: Thursday, April 1, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact

Title: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia”


General anesthesia is a drug induced state that is critical for safely and humanely allowing a patient to undergo surgery or an invasive diagnostic procedure. During the last 10 years the study of the neuroscience of anesthetic drugs has been an active area of research. In this lecture we show how anesthetics create altered states of arousal by creating oscillation that impede how the various parts of the brain communicate. These oscillations, which are readily visible on the electroencephalogram (EEG), change systematically with anesthetic dose, anesthetic class and patient age. We will show how the EEG oscillations can be used to monitor the brain states of patients receiving general anesthesia, manage anesthetic delivery and learn about fundamental brain physiology.


Emery N. Brown is the Edward Hood Taplin Professor of Medical Engineering and Professor of Computational Neuroscience at Massachusetts Institute of Technology. He is the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School and Massachusetts General Hospital (MGH), and an anesthesiologist at MGH.

Dr. Brown received his BA (magna cum laude) in Applied Mathematics from Harvard College, his MA and PhD in statistics from Harvard University, and his MD (magna cum laude) from Harvard Medical School. He completed his internship in internal medicine at the Brigham and Women’s Hospital and his residency in anesthesiology at MGH. He joined the staff at MGH, the faculty at Harvard Medical School in 1992 and the faculty at MIT in 2005.

Dr. Brown is an anesthesiologist-statistician recognized for developing signal processing algorithms for neuroscience data analysis and for defining the neurophysiological mechanisms of general anesthesia.

Dr. Brown was a member of the NIH BRAIN Initiative Working Group. He is a fellow of the IEEE, the AAAS, the American Academy of Arts and Sciences and the National Academy of Inventors. Dr. Brown is a member of the National Academy of Medicine, the National Academy of Sciences and the National Academy of Engineering. He received an NIH Director’s Pioneer Award, the National Institute of Statistical Sciences Sacks Award, the American Society of Anesthesiologists Excellence in Research Award, the Dickson Prize in Science, the Swartz Prize for Theoretical and Computational Neuroscience and a Doctor of Science (honoris causa) from the University of Southern California.

Watch the Inaugural Joseph Bordogna Forum Lecture by Dr. John Brooks Slaughter

The inaugural Joseph Bordogna Forum took place on Wednesday, February 24 and featured a talk from John Brooks Slaughter, Deans’ Professor of Education and Engineering at USC’s Viterbi School of Engineering and Rossier School of Education, entitled a “Call to Action for Racial Justice and Equity in Engineering.”

Dr. Slaughter was joined by panelists Jennifer R. Lukes, Professor in Mechanical Engineering and Applied Mechanics, Oladayo Adewole, an alumnus in Robotics who recently defended his doctoral dissertation in Bioengineering, and CJ Taylor, Raymond S. Markowitz President’s Distinguished Professor in Computer and Information Science and Associate Dean, Diversity, Equity and Inclusion, who moderated the talk.

Dr. Slaughter talked about how microaggressions can often be a barrier to student success and emphasized on the importance of mentorship for underrepresented minorities: “If faculty members seek to improve the retention of underrepresented minorities, often times more has to be done than introducing science and math principles early on in their education, but instead, the unique backgrounds of these students must be understood.”

Originally posted in Penn Engineering Today.