New Class of Encrypted Peptides Offer Hope in Fight Against Antibiotic Resistance

by Eric Horvath

Cesar de la Fuente, Presidential Assistant Professor with appointments in the Perelman School of Medicine, School of Engineering and School of Arts & Sciences (Image: Eric Sucar)

In a significant advance against the growing threat of antibiotic-resistant bacteria, researchers have identified a novel class of antimicrobial agents known as encrypted peptides, which may expand the immune system’s arsenal of tools to fight infection. The findings, published in Trends in Biotechnology by Cell Press, reveal that many antimicrobial molecules originate from proteins not traditionally associated with immune responses.

Unlike conventional antibiotics that target specific bacterial processes, these newly discovered peptides disrupt the protective membranes surrounding bacterial cells. By inserting themselves into these membranes—much like breaching a fortress wall—the peptides destabilize and ultimately destroy the bacteria.

“Our findings suggest that these previously overlooked molecules could be key players in the immune system’s response to infection,” says César de la Fuente, presidential assistant professor in bioengineering and in chemical and biomolecular engineering in the School of Engineering and Applied Science, in psychiatry and microbiology in the Perelman School of Medicine, and in chemistry in the School of Arts & Sciences, who led the research team. “This may not only redefine how we understand immunity but also opens up new possibilities for treating drug-resistant infections.”

Read the full story in Penn Medicine News.