Penn Health-Tech After Five Years: An Interview with Executive Director Katie Reuther

Penn Health-Tech director Katie Reuther (center) with Glory Durham, director of operations, Penn Health-Tech (at left), and Courtney Houtsma, program manager, Penn Health-Tech (at right), at a recent symposium.

A new interview in Penn Medicine News examines Penn Health-Tech (PHT) five years after its founding. PHT began as an experimental collaborative effort between the Perelman School of Medicine, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research to provide funding, advising, and resources to empower innovators to develop transformative devices and technologies in the Penn community. Specifically, PHT specializes in connecting innovators from across Penn’s campus and schools to connect and to develop technology and medical devices to answer some of the most pressing needs in healthcare. Katherine (Katie) Reuther, Practice Associate Professor in Bioengineering, was appointed Executive Director of PHT in 2021 and is leading this venture into the next phase of its growth. Reuther, an alumna of Penn Bioengineering, followed up her doctoral studies with a M.B.A. from Columbia University and subsequently stayed at Columbia as Senior Lecturer in Design, Innovation, and Entrepreneurship in the Department of Biomedical Engineering. As such, her experience and expertise in the fields of both biomedical engineering and entrepreneurship position her well to shepherd PHT into its fullest potential:

“What appealed to me most about the position was a strong foundation, deep resources, and the potential and room to do more, including the opportunity to elevate Penn and Philadelphia as a national hub for health-technology innovation.”

Read the full interview with Reuther in “From ‘Experiment’ to $50 Million in Funding: After 5 Years, Where Penn Health-Tech is Going.”

Daniel A. Hammer Named Director of Center for Precision Engineering for Health

Daniel Hammer
Daniel Hammer, Ph.D.

by Evan Lerner

Earlier this year, Penn President Amy Gutmann and Vijay Kumar, Nemirovsky Family Dean of Penn’s School of Engineering and Applied Science, announced a $100 million commitment to accelerate innovations in medical technologies. Called the Center for Precision Engineering for Health (CPE4H), the initiative aims to bring together researchers from a wide range of fields to develop customizable biomaterials and implantable devices that can be tailored for individualized diagnostics, treatments and therapies.

Now, Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor in Penn Engineering’s Departments of Bioengineering and Chemical and Biomolecular Engineering, has been named CPE4H’s inaugural director.

“Penn is a unique environment where innovations in healthcare can emerge very rapidly, as we’ve seen with the development of CAR-T cancer immunotherapy, and the design and delivery of mRNA vaccines,” Hammer says. “Engineering plays a central role in making those technologies functional and maximizing their impact, and CPE4H is a golden opportunity to take these technologies to the next level in a way that actually helps people.”

Read the full story in Penn Engineering Today.

Single-cell Cancer Detection Project Wins 2021 NEMO Prize

This scProteome-seq array shows separated protein biomarkers (green and magenta spots) from thousands of single cells.

Penn Health-Tech’s Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize awards $80,000 to support early-stage ideas joining engineering and medicine. The goal of the prize is to encourage collaboration between the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science by supporting innovative ideas that might not receive funding from traditional sources.

This year, the NEMO Prize has been awarded to a team of researchers from Penn Engineering’s Department of Bioengineering. Their project aims to develop a technology that can detect multiple cancer biomarkers in single cells from tumor biopsy samples.

As cancer cells grow in the body, one of the characteristics that influences tumor growth and response to treatment is cancer cell state heterogeneity, or differences in cell states. Methods that rapidly catalogue cell heterogeneity may be able to detect rare cells responsible for tumor growth and drug resistance.

Single-cell transcriptomics (scRNA-seq) is the standard method for studying cell states; by amplifying and analyzing the cell’s complement of RNA sequences at a given time, researchers can get a snapshot of what proteins the cell is in the process of making. However, this method does not fully capture the function of the cell. The field of proteomics, which captures the actual protein content of cells along with post-translational modifications, provides a better picture of the cell’s function, but single-cell proteomic methods with the same sensitivity as scRNA-seq do not currently exist.

Alex Hughes, Lukasz Bugaj and Andrew Tsourkas

This collaborative project, which joins Assistant Professors Alex Hughes and Lukasz Bugaj, as well as Professor Andrew Tsourkas, aims to change that by developing multiplexed, sensitive and highly specific single-cell proteomics technologies to advance our understanding of cancer, its detection and its treatment.

This new technology, called scProteome-seq, builds from Hughes’s previous work.

“My specific expertise here is as an inventor of single-cell western blotting, which is the core technology that our team is building on,” says Hughes. “Single-cell proteomics technologies of this type have a track-record of commercial translation for applications in basic science and clinical automation, so our approach has a high potential for real-world impact.”

The current technology from Hughes’ lab separates proteins in cells by their molecular weight and “blots” them on a piece of paper. Improvements to this technology included in this project will remove the limitation of using light-emitting dyes to detect different proteins and instead use DNA barcodes to differentiate them.

Read the full story in Penn Engineering Today.

Penn Bioengineering Senior Raveen Kariyawasam Named 2022 Rhodes Scholar

2022 Rhodes Scholar, Raveen Kariyawasam

One of the two University of Pennsylvania seniors who were awarded Rhodes Scholarships for graduate study at the University of Oxford is Penn Engineering‘s own Raveen Kariyawasam, from Colombo, Sri Lanka.

Kariyawasam is a double major in Engineering’s Department of Bioengineering, with concentrations in computational medicine and medical devices, and in the Wharton School, with concentrations in finance and entrepreneurship and innovation.

“We are so proud of our newest Penn Rhodes Scholars who have been chosen for this tremendous honor and opportunity,” said President Amy Gutmann. “The work Raveen has done in health care innovation and accessibility and Nicholas has done to support student well-being while at Penn is impressive, and pursuing a graduate degree at Oxford will build upon that foundation. We look forward to seeing how they make an impact in the future.”

The Rhodes is highly competitive and one of the most prestigious scholarships in the world. The scholarships provide all expenses for as long as four years of study at Oxford University in England.

According to the Rhodes Trust, about 100 Rhodes Scholars will be selected worldwide this year, chosen from more than 60 countries. Several have attended American colleges and universities but are not U.S. citizens and have applied through their home country, including Kariyawasam in Sri Lanka.

With an interest in health care innovation and accessibility, Kariyawasam is involved in several research projects, including his Wharton honors thesis that focuses on optimizing a low-cost electronic medical record system in Sri Lanka and the Philippines. He has received several research grants, including the Vagelos Undergraduate Research Grant, the Berkman Opportunity Fund grant, and the National Science Foundation’s Innovation Corps grant. At Penn, he is editor-in-chief of Synapse, a student-run health care magazine and is vice president of the Phi Sigma Biological Honor Society. He is a disc jockey for the student-run radio station, WQHS, and an executive board member of the Wharton Undergraduate Healthcare Club. He also is a former student ambassador at the Penn Health-Tech Center for Health Devices and Technology. At Oxford, Kariyawasam plans to pursue a D.Phil. degree.

Read more at Penn Today.

Katherine Reuther Appointed Practice Associate Professor in Bioengineering

Katie Reuther, PhD, MBA

Katherine (Katie) Reuther, Ph.D., M.B.A. will return to Penn Engineering in July 2021 as the new Executive Director of Penn Health-Tech (PHT) and as Practice Associate Professor in Bioengineering. Reuther is an alumna of Penn Bioengineering, having obtained her Ph.D. at Penn in the laboratory of Louis Soslowsky, Fairhill Professor in Bioengineering and Orthopaedic Surgery.

“Dr. Reuther is a role model for biomedical innovation, linking formal training in engineering and entrepreneurship with deep practical experience in leading technologies through the commercialization pipeline. Dr. Reuther graduated with her Bachelor of Science in Biomedical Engineering, Magna cum Laude, from the College of New Jersey; she obtained her Ph.D. in Bioengineering at Penn in the laboratory of Dr. Louis Soslowsky and completed her MBA at Columbia, where she currently is a Senior Lecturer in Design, Innovation, and Entrepreneurship in the Department of Biomedical Engineering. During her tenure at Columbia, Dr. Reuther helped create and led Columbia’s Biomedical Engineering Technology Accelerator (BiomedX), overseeing more than 60 technologies leading to $80M in follow-on funding and 18 licenses to start-ups or start-ups industry.  Introducing both new courses and a new curriculum in biomedical innovation, Dr. Reuther was recently awarded Columbia’s highest teaching honor, the ‘2021 Presidential Award for Outstanding Teaching,’ this Spring as a recognition of her excellence in teaching and dedication to students.

Katie has extensive experience in developing and translating early-stage medical technologies and discoveries and providing formal educational training for aspiring medical entrepreneurs.  Dr. Reuther served as Director of Masters’ Studies for the Department of Biomedical Engineering and spearheaded the development of a graduate-level medical innovation program, including an interdisciplinary course available to scientists, engineers, and clinicians. Dr. Reuther provided advising and educational support to more than 100 student/faculty teams and start-ups, as they worked to develop and commercialize medical technologies. She will bring these extensive skills to PHT and Penn Bioengineering in two new, hands-on graduate courses in medical innovation centered around Penn Health-Tech ventures.”

Read the full announcement in OVPR news.

Penn Health-Tech Q&A with César de la Fuente

Created in the lab of César de la Fuente, this miniaturized, portable version of rapid COVID-19 test, which is compatible with smart devices, can detect SARS-CoV-2 within four minutes with nearly 100% accuracy. (Image: Courtesy of César de la Fuente)

César de la Fuente, Presidential Assistant Professor in Bioengineering, Chemical and Biomolecular Engineering, Microbiology, and Psychiatry, was the inaugural recipient of the Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize from Penn Health-Tech in 2020 for his low-cost, rapid COVID test. Now with promising results recently published in the journal Matter (showing 90 percent accuracy in as little as four minutes), Penn Health-Tech caught up with de la Fuente to discuss his experience over the past year:

“How did [your project] evolve in the past year?

‘We started with one prototype and now have three entirely different prototypes for the test. Two use electrochemistry, and we are now working on a new technology that uses calorimetry. With calorimetry, when the cotton swabs are exposed to the virus, they change color. This means users are able to see if they’re affected by a virus through a simple color change, making it more of a visual detection method.'”

Read the full Q&A in the Penn Health-Tech blog.

“New Biosealant Can Stabilize Cartilage, Promote Healing After Injury”

New research from Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering and Director of Penn Medicine’s McKay Orthopaedic Research Laboratory, announces a “new biosealant therapy may help to stabilize injuries that cause cartilage to break down, paving the way for a future fix or – even better – begin working right away with new cells to enhance healing.” Their research was published in Advanced Healthcare Materials. The study’s lead author was Jay Patel, a former postdoctoral fellow in the McKay Lab and now Assistant Professor at Emory University and was contributed to by Claudia Loebel, a postdoctoral research in the Burdick lab and who will begin an appointment as Assistant Professor at the University of Michigan in Fall 2021. In addition, the technology detailed in this publication is at the heart of a new company (Forsagen LLC) spun out of Penn with support from the Penn Center for Innovation (PCI) Ventures Program, which will attempt to spearhead the system’s entry into the clinic. It is co-founded by both Mauck and Patel, along with study co-author Jason Burdick, Professor in Bioengineering, and Ana Peredo, a PhD student in Bioengineering.

Read the story in Penn Medicine News.

“The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines”

Penn Bioengineering’s BioMakerSpace in action (photo taken pre-pandemic)

Writing for the Penn Health-Tech blog, Hannah Spector profiled the George H. Stephenson Foundation Educational Laboratory and Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering at Penn Engineering. This interdisciplinary Bio-MakerSpace (aka BioMakerSpace) is open to the entire Penn community for independent research and has become a hub for student startups in recent years:

One example is Strella Biotechnology, founded in 2019 by Katherine Sizov (Biology 2019 & President’s Innovation Prize winner). Strella is developing sensors with the ability to reduce the amount of food waste due to going bad in storage. “Having a Bio-MakerSpace that gives you the functionalities of both a wet lab and a traditional electronics lab is extremely helpful in developing novel technologies” says Sizov on the BE Labs Youtube channel.

The Bio-MakerSpace provides students of all academic backgrounds the resources to turn their ideas into realities, including highly knowledgeable lab staff. Seth Fein (BSE ’20, MSE ’21) has worked at the lab since Fall 2020. “Because bioengineering spans many fields, we encourage interdisciplinary work. Students from Mechanical, Electrical, and Chemical Engineering have all found valuable resources in the lab,” says Fein.

The article also discusses the many resources the BioMakerSpace provides to Penn students and their efforts to keep the lab functional, safe, and open for research and education during the current semester.

Penn Health-Tech is an interdisciplinary center launched in 2017 to advance medical device innovation across the Perelman School of Medicine and the School of Engineering and Applied Sciences by forging collaborative connections among Penn researchers and providing seed funding to incubate novel ideas to advance health care.

Continue reading “The Bio-MakerSpace — Fostering Learning and Innovation Across Many Disciplines” at the Penn Health-Tech blog.

Read more BE blog posts featuring the BioMakerSpace.

An Ecosystem of Innovation Fosters Tech-based Solutions to COVID-19 Challenges

by Erica K. Brockmeier

GRASP lab researchers (from left) Bernd Pfrommer, Kenneth Chaney, and Caio Mucchiani assembling telemedicine cart prototypes in Levine hall earlier this spring. (Image courtesy of Kenneth Chaney and Bernd Pfrommer)

Since the start of the spring, members of the Penn community have been working to combat coronavirus and its many impacts. Some people are studying COVID-19 or developing vaccines, while others are 3D-printing face shields for health care workers and delivering fall courses online.

And while innovation in health care usually brings to mind new treatments and medicines, the efforts of clinicians, engineers, and IT specialists demonstrate the importance technological infrastructure for rapidly deployable, tech-based solutions so clinicians can provide the best care to patients amid social distancing and coronavirus restrictions.

The telemedicine revolution

In late March, telemedicine was key for allowing Penn Medicine clinicians to deliver care while avoiding potentially risky in-person interactions. Chief Medical Information Officer C. William Hanson III and his team helped set up the IT infrastructure for scaling up telemedicine capabilities and provided guidance to clinicians. Thanks to the quick pivot, Penn Medicine went from 300 telemedicine visits in February to more than 7,500 visits per day in a matter of weeks.

But far from seeing telemedicine as a temporary solution during the pandemic, Hanson has been a long-time advocate for this approach to health care. In his role as liaison between clinicians and the IT community in the past 10 years Hanson, helped establish remote ICU monitoring protocols and broadened opportunities for televisits with specialists. Now, with the pandemic removing many of the previous barriers to entry, be they technical, insurance-based, or simply a lack of familiarity, Hanson believes that telemedicine is here to stay.

“As the pandemic evolved, people were aware that telemedicine could help the health care system, as well as doctors and patients, during this crisis,” he says. “Now, there are definitely places where telemedicine makes good sense, and we will continue to use that as part of our way of handling a problem.” Other benefits include removing geographic barriers to entry for new patients, reduced appointment times, increased patient satisfaction, and reduced health care provider burnout.

Simple solutions for COVID-19 challenges

As the director of Penn’s Telestroke Program, neurologist Michael Mullen has experience diagnosing from a distance. This spring, telemedicine carts his group uses were repurposed in COVID ICUs. At the same time, Mullen and group wanted to expand their ability to assess stroke patients remotely, so he reached out to Brian Litt, faculty director of Penn Health-Tech, to see how he could collaborate to create an analogous telemedicine station using readily available, cost-effective components.

Rapid and simple solutions are at the heart of Penn’s ModLab, a subgroup of the GRASP lab focused on robots made of configurable individual components. As part of a COVID-19 rapid response initiative, engineers worked with Mullen to figure out a viable solution in record time. “The idea was to make it as simple and as fast as possible,” says graduate student Caio Mucchiani. “With robotics, usually you want to make things more sophisticated, however, given the situation, we needed to know how we could use off-the-shelf components to make something.”

Fellow graduate student Ken Chaney, postdoc Bernd Pfrommer, and Mucchiani came up with a plan that replicated the required specs of the existing telemedicine carts, including state-of-the-art cameras for detailed imaging as well as a reliable, easily rechargeable battery. The team then put together 10 telemedicine carts, assembling the prototypes with social distancing and masks at the GRASP lab in early April.

While changes to treatment approaches mean that these carts still require additional field testing, Mullen is still eager to expand the program, be it for diagnosing patients safely or educating medical students in an era of social distancing. “In the setting of COVID, when everything was getting crazy, it was remarkable to see the energy that GRASP brought to help,” adds Mullen. “Everyone was really busy, and it was amazing to see this group of people who wanted to use their expertise to help.”

Continue reading at Penn Today.

NB: Brian Litt is Professor in Neurology and Bioengineering.

César de la Fuente Wins Inaugural NEMO Prize, Will Develop Rapid COVID Virus Breath Tests

The paper-based tests could be integrated directly into facemasks and provide instant results at testing sites.

Cesar de la Fuente-Nunez, PhD

When Penn Health-Tech announced its Nemirovsky Engineering and Medicine Opportunity, or NEMO Prize, in February, the center’s researchers could only begin to imagine the impact the looming COVID-19 pandemic was about to unleash. But with the promise of $80,000 to support early-stage ideas at the intersection of engineering and medicine, the contest quickly sparked a winning innovation aimed at combating the crisis.

Judges from the University of Pennsylvania’s School of Engineering and Applied Sciences and Perelman School of Medicine awarded its first NEMO Prize to César de la Fuente, PhD, who proposed a paper-based COVID diagnostic system that could capture viral particles on a person’s breath, then give a result in a matter of seconds when taken to a testing site.

Similar tests for bacteria cost less than a dollar each to make. De la Fuente, a Presidential Assistant Professor in the departments of Psychiatry, Microbiology, and Bioengineering, is aiming to make COVID tests at a similar price point and with a smaller footprint so that they could be directly integrated into facemasks, providing further incentive for their regular use.

“Wearing a facemask is vital to containing the spread of COVID because, before you know you’re sick, they block your virus-carrying droplets so those droplets can’t infect others,” de la Fuente says. “What we’re proposing could eventually lead to a mask that can be infected by the virus and let you know that you’re infected, too.”

De la Fuente’s lab has conducted molecular dynamic simulations of the regions of the SARS-COV-2 spike protein (blue) that bind to the human ACE2 receptor (red and yellow).

De la Fuente’s expertise is in synthetic biology and molecular-scale simulations of disease-causing viruses and bacteria. Having such fine-grained computational models of these microbes’ binding sites allow de la Fuente to test them against massive libraries of proteins, seeing which bind best. Other machine learning techniques can then further narrow down the minimum molecular structures responsible for binding, resulting in functional protein fragments that are easier to synthesize and manipulate.

The spike-shaped proteins that give coronaviruses their crown-like appearance and name bind to a human receptor known as ACE2. De la Fuente and his colleagues are now aiming to characterize the molecular elements and environmental factors that would allow for the most precise, reliable detection of the virus.

Read the full story on the Penn Engineering blog.