2024 CAREER Award Recipient: Flavia Vitale

by Melissa Pappas

Neurological disorders such as epilepsy, Alzheimers, Parkinson’s and certain forms of dementia are the leading cause of disability and second-leading cause of disease worldwide. These disorders disproportionately affect low-resourced communities due to lack of access to specialized healthcare, and many of these complex diseases lack curative solutions. The need to address neurological disorders is high, yet current diagnostics and treatments are not effective for preventative or personalized care and are not accessible or affordable enough to meet the needs of more than 3 billion people living with neurological disorders. 

Flavia Vitale, Associate Professor in Bioengineering in Penn Engineering and in Neurology in Penn Medicine, works to meet this need, developing accessible and affordable solutions for the diagnosis, treatment and rehabilitation of people with neurological disorders. 

“I started my research career in biomedical engineering hoping to one day help humanity,” says Vitale, who is also a 2024 recipient of a National Science Foundation (NSF) CAREER Award for her work. “But it wasn’t until I gained a more diverse skill set during my doctoral and postdoctoral research across chemical engineering and materials science that I was able to do that in a real way.”

Vitale’s multidisciplinary skills are what allow her to develop devices that help people living with brain disorders. The CAREER Award is now helping her further apply those skills and actualize some of her first long-term research projects at Penn. 

“This CAREER Award will support my lab’s current research in leveraging innovation in materials and fabrication approaches to develop devices that are able to interface with and control different chemical and electrical signals inside the brain,” she says.

Focused primarily on understanding the brain activity involved in epilepsy-induced seizures, Vitale aims to design and develop brain-interface devices to pinpoint and suppress uncontrolled brain activity to prevent seizures from happening. Her work will lead to revolutionary health care for the 30% of epilepsy patients whose conditions are drug resistant. Currently those patients either wait out the uncontrolled brain activity and oftentimes life-threatening convulsions, or hope to be eligible for invasive surgeries to remove the part of the brain where seizures originate or to implant the seizure-controlling devices that are currently available.

Read the full story in Penn Engineering Today.

The NEMO Prize Goes to Research Improving Soft-Tissue Transplant Surgeries

by Melissa Pappas

Daeyeon Lee (left), Oren Friedman (center) and Sergei Vinogradov (right)

Each year, the Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize, funded by Penn Health-Tech, awards $80,000 to a collaborative team of researchers from the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science for early-stage, interdisciplinary ideas.

This year, the NEMO Prize has been awarded to Penn Engineering’s Daeyeon Lee, Russel Pearce and Elizabeth Crimian Heuer Professor in Chemical and Biomolecular Engineering, Oren Friedman, Associate Professor of Clinical Otorhinolaryngology in the Perelman School of Medicine, and Sergei Vinogradov, Professor in the Department of Biochemistry and Biophysics in the Perelman School of Medicine and the Department of Chemistry in the School of Arts & Sciences. Together, they are developing a new therapy that improves the survival and success of soft-tissue grafts used in reconstructive surgery.

More than one million people receive soft-tissue reconstructive surgery for reasons such as tissue trauma, cancer or birth defects. Autologous tissue transplants are those where cells and tissue such as fat, skin or cartilage are moved from one part of a patient’s body to another. As the tissue comes from the patient, there is little risk of transplant rejection. However, nearly one in four autologous transplants fail due to tissue hypoxia, or lack of oxygen. When transplants fail the only corrective option is more surgery. Many techniques have been proposed and even carried out to help oxygenate soft tissue before it is transplanted to avoid failures, but current solutions are time consuming and expensive. Some even have negative side effects. A new therapy to help oxygenate tissue quickly, safely and cost-effectively would not only increase successful outcomes of reconstructive surgery, but could be widely applied to other medical challenges. 

The therapy proposed by this year’s NEMO Prize recipients is a conglomerate or polymer of microparticles that can encapsulate oxygen and disperse it in sustainable and controlled doses to specific locations over periods of time up to 72 hours. This gradual release of oxygen into the tissue from the time it is transplanted to the time it functionally reconnects to the body’s vascular system is essential to keeping the tissue alive. 

“The microparticle design consists of an oxygenated core encapsulated in a polymer shell that enables the sustained release of oxygen from the particle,” says Lee. “The polymer composition and thickness can be controlled to optimize the release rate, making it adaptable to the needs of the hypoxic tissue.” 

These life-saving particles are designed to be integrated into the tissue before transplantation. However, because they exist on the microscale, they can also be applied as a topical cream or injected into tissue after transplantation. 

“Because the microparticles are applied directly into tissues topically or by interstitial injection (rather than being administered intravenously), they surpass the need for vascular channels to reach the hypoxic tissue,” says Friedman. “Their micron-scale size combined with their interstitial administration, minimizes the probability of diffusion away from the injury site or uptake into the circulatory system. The polymers we plan to use are FDA approved for sustained-release drug delivery, biocompatible and biodegrade within weeks in the body, presenting minimal risk of side effects.”

The research team is currently testing their technology in fat cells. Fat is an ideal first application because it is minimally invasive as an injectable filler, making it versatile in remodeling scars and healing injury sites. It is also the soft tissue type most prone to hypoxia during transplant surgeries, increasing the urgency for oxygenation therapy in this particular tissue type.

Read the full story in Penn Engineering Today.

Daeyeon Lee and Sergei Vinogradov are members of the Penn Bioengineering Graduate Group.

Michael Mitchell and Kyle Vining Win IDEA Prize from CiPD and Penn Health-Tech

Michael J. Mitchell

Kyle Vining

 Michael J. Mitchell, J. Peter and Geri Skirkanich Assistant Professor of Innovation in Bioengineering, and Kyle Vining, Assistant Professor in Materials Science and Engineering and in Penn Dental Medicine and member of the Penn Bioengineering Graduate Group, have been awarded the second-annual IDEA (Innovation in Dental Medicine and Engineering to Advance Oral Health) Prize, issued by the Center for Innovation & Precision Dentistry (CiPD) and Penn Health-Tech.

“Through their collaborative research, they are aiming to develop next-generation treatments for dental caries (tooth-decay) using lipid nanoparticles, the same delivery vehicles employed in the mRNA COVID-19 vaccine technology.

‘This project shows the type of innovative ideas and collaborations that we are kickstarting through the IDEA prize,’ says Dr. Michel Koo, co-director of the CiPD and Professor at Penn Dental Medicine. ‘This is a great example of synergistic interaction at the interface of engineering and oral health’ adds Dr. Kate Stebe, co-director of the CiPD and Professor at Penn Engineering.”

Read the full announcement in Penn Dental Medicine News.

Penn Health-Tech After Five Years: An Interview with Executive Director Katie Reuther

Penn Health-Tech director Katie Reuther (center) with Glory Durham, director of operations, Penn Health-Tech (at left), and Courtney Houtsma, program manager, Penn Health-Tech (at right), at a recent symposium.

A new interview in Penn Medicine News examines Penn Health-Tech (PHT) five years after its founding. PHT began as an experimental collaborative effort between the Perelman School of Medicine, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research to provide funding, advising, and resources to empower innovators to develop transformative devices and technologies in the Penn community. Specifically, PHT specializes in connecting innovators from across Penn’s campus and schools to connect and to develop technology and medical devices to answer some of the most pressing needs in healthcare. Katherine (Katie) Reuther, Practice Associate Professor in Bioengineering, was appointed Executive Director of PHT in 2021 and is leading this venture into the next phase of its growth. Reuther, an alumna of Penn Bioengineering, followed up her doctoral studies with a M.B.A. from Columbia University and subsequently stayed at Columbia as Senior Lecturer in Design, Innovation, and Entrepreneurship in the Department of Biomedical Engineering. As such, her experience and expertise in the fields of both biomedical engineering and entrepreneurship position her well to shepherd PHT into its fullest potential:

“What appealed to me most about the position was a strong foundation, deep resources, and the potential and room to do more, including the opportunity to elevate Penn and Philadelphia as a national hub for health-technology innovation.”

Read the full interview with Reuther in “From ‘Experiment’ to $50 Million in Funding: After 5 Years, Where Penn Health-Tech is Going.”

Daniel A. Hammer Named Director of Center for Precision Engineering for Health

Daniel Hammer
Daniel Hammer, Ph.D.

by Evan Lerner

Earlier this year, Penn President Amy Gutmann and Vijay Kumar, Nemirovsky Family Dean of Penn’s School of Engineering and Applied Science, announced a $100 million commitment to accelerate innovations in medical technologies. Called the Center for Precision Engineering for Health (CPE4H), the initiative aims to bring together researchers from a wide range of fields to develop customizable biomaterials and implantable devices that can be tailored for individualized diagnostics, treatments and therapies.

Now, Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor in Penn Engineering’s Departments of Bioengineering and Chemical and Biomolecular Engineering, has been named CPE4H’s inaugural director.

“Penn is a unique environment where innovations in healthcare can emerge very rapidly, as we’ve seen with the development of CAR-T cancer immunotherapy, and the design and delivery of mRNA vaccines,” Hammer says. “Engineering plays a central role in making those technologies functional and maximizing their impact, and CPE4H is a golden opportunity to take these technologies to the next level in a way that actually helps people.”

Read the full story in Penn Engineering Today.

Single-cell Cancer Detection Project Wins 2021 NEMO Prize

This scProteome-seq array shows separated protein biomarkers (green and magenta spots) from thousands of single cells.

Penn Health-Tech’s Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize awards $80,000 to support early-stage ideas joining engineering and medicine. The goal of the prize is to encourage collaboration between the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science by supporting innovative ideas that might not receive funding from traditional sources.

This year, the NEMO Prize has been awarded to a team of researchers from Penn Engineering’s Department of Bioengineering. Their project aims to develop a technology that can detect multiple cancer biomarkers in single cells from tumor biopsy samples.

As cancer cells grow in the body, one of the characteristics that influences tumor growth and response to treatment is cancer cell state heterogeneity, or differences in cell states. Methods that rapidly catalogue cell heterogeneity may be able to detect rare cells responsible for tumor growth and drug resistance.

Single-cell transcriptomics (scRNA-seq) is the standard method for studying cell states; by amplifying and analyzing the cell’s complement of RNA sequences at a given time, researchers can get a snapshot of what proteins the cell is in the process of making. However, this method does not fully capture the function of the cell. The field of proteomics, which captures the actual protein content of cells along with post-translational modifications, provides a better picture of the cell’s function, but single-cell proteomic methods with the same sensitivity as scRNA-seq do not currently exist.

Alex Hughes, Lukasz Bugaj and Andrew Tsourkas

This collaborative project, which joins Assistant Professors Alex Hughes and Lukasz Bugaj, as well as Professor Andrew Tsourkas, aims to change that by developing multiplexed, sensitive and highly specific single-cell proteomics technologies to advance our understanding of cancer, its detection and its treatment.

This new technology, called scProteome-seq, builds from Hughes’s previous work.

“My specific expertise here is as an inventor of single-cell western blotting, which is the core technology that our team is building on,” says Hughes. “Single-cell proteomics technologies of this type have a track-record of commercial translation for applications in basic science and clinical automation, so our approach has a high potential for real-world impact.”

The current technology from Hughes’ lab separates proteins in cells by their molecular weight and “blots” them on a piece of paper. Improvements to this technology included in this project will remove the limitation of using light-emitting dyes to detect different proteins and instead use DNA barcodes to differentiate them.

Read the full story in Penn Engineering Today.

Penn Bioengineering Senior Raveen Kariyawasam Named 2022 Rhodes Scholar

2022 Rhodes Scholar, Raveen Kariyawasam

One of the two University of Pennsylvania seniors who were awarded Rhodes Scholarships for graduate study at the University of Oxford is Penn Engineering‘s own Raveen Kariyawasam, from Colombo, Sri Lanka.

Kariyawasam is a double major in Engineering’s Department of Bioengineering, with concentrations in computational medicine and medical devices, and in the Wharton School, with concentrations in finance and entrepreneurship and innovation.

“We are so proud of our newest Penn Rhodes Scholars who have been chosen for this tremendous honor and opportunity,” said President Amy Gutmann. “The work Raveen has done in health care innovation and accessibility and Nicholas has done to support student well-being while at Penn is impressive, and pursuing a graduate degree at Oxford will build upon that foundation. We look forward to seeing how they make an impact in the future.”

The Rhodes is highly competitive and one of the most prestigious scholarships in the world. The scholarships provide all expenses for as long as four years of study at Oxford University in England.

According to the Rhodes Trust, about 100 Rhodes Scholars will be selected worldwide this year, chosen from more than 60 countries. Several have attended American colleges and universities but are not U.S. citizens and have applied through their home country, including Kariyawasam in Sri Lanka.

With an interest in health care innovation and accessibility, Kariyawasam is involved in several research projects, including his Wharton honors thesis that focuses on optimizing a low-cost electronic medical record system in Sri Lanka and the Philippines. He has received several research grants, including the Vagelos Undergraduate Research Grant, the Berkman Opportunity Fund grant, and the National Science Foundation’s Innovation Corps grant. At Penn, he is editor-in-chief of Synapse, a student-run health care magazine and is vice president of the Phi Sigma Biological Honor Society. He is a disc jockey for the student-run radio station, WQHS, and an executive board member of the Wharton Undergraduate Healthcare Club. He also is a former student ambassador at the Penn Health-Tech Center for Health Devices and Technology. At Oxford, Kariyawasam plans to pursue a D.Phil. degree.

Read more at Penn Today.

Katherine Reuther Appointed Practice Associate Professor in Bioengineering

Katie Reuther, PhD, MBA

Katherine (Katie) Reuther, Ph.D., M.B.A. will return to Penn Engineering in July 2021 as the new Executive Director of Penn Health-Tech (PHT) and as Practice Associate Professor in Bioengineering. Reuther is an alumna of Penn Bioengineering, having obtained her Ph.D. at Penn in the laboratory of Louis Soslowsky, Fairhill Professor in Bioengineering and Orthopaedic Surgery.

“Dr. Reuther is a role model for biomedical innovation, linking formal training in engineering and entrepreneurship with deep practical experience in leading technologies through the commercialization pipeline. Dr. Reuther graduated with her Bachelor of Science in Biomedical Engineering, Magna cum Laude, from the College of New Jersey; she obtained her Ph.D. in Bioengineering at Penn in the laboratory of Dr. Louis Soslowsky and completed her MBA at Columbia, where she currently is a Senior Lecturer in Design, Innovation, and Entrepreneurship in the Department of Biomedical Engineering. During her tenure at Columbia, Dr. Reuther helped create and led Columbia’s Biomedical Engineering Technology Accelerator (BiomedX), overseeing more than 60 technologies leading to $80M in follow-on funding and 18 licenses to start-ups or start-ups industry.  Introducing both new courses and a new curriculum in biomedical innovation, Dr. Reuther was recently awarded Columbia’s highest teaching honor, the ‘2021 Presidential Award for Outstanding Teaching,’ this Spring as a recognition of her excellence in teaching and dedication to students.

Katie has extensive experience in developing and translating early-stage medical technologies and discoveries and providing formal educational training for aspiring medical entrepreneurs.  Dr. Reuther served as Director of Masters’ Studies for the Department of Biomedical Engineering and spearheaded the development of a graduate-level medical innovation program, including an interdisciplinary course available to scientists, engineers, and clinicians. Dr. Reuther provided advising and educational support to more than 100 student/faculty teams and start-ups, as they worked to develop and commercialize medical technologies. She will bring these extensive skills to PHT and Penn Bioengineering in two new, hands-on graduate courses in medical innovation centered around Penn Health-Tech ventures.”

Read the full announcement in OVPR news.

Penn Health-Tech Q&A with César de la Fuente

Created in the lab of César de la Fuente, this miniaturized, portable version of rapid COVID-19 test, which is compatible with smart devices, can detect SARS-CoV-2 within four minutes with nearly 100% accuracy. (Image: Courtesy of César de la Fuente)

César de la Fuente, Presidential Assistant Professor in Bioengineering, Chemical and Biomolecular Engineering, Microbiology, and Psychiatry, was the inaugural recipient of the Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize from Penn Health-Tech in 2020 for his low-cost, rapid COVID test. Now with promising results recently published in the journal Matter (showing 90 percent accuracy in as little as four minutes), Penn Health-Tech caught up with de la Fuente to discuss his experience over the past year:

“How did [your project] evolve in the past year?

‘We started with one prototype and now have three entirely different prototypes for the test. Two use electrochemistry, and we are now working on a new technology that uses calorimetry. With calorimetry, when the cotton swabs are exposed to the virus, they change color. This means users are able to see if they’re affected by a virus through a simple color change, making it more of a visual detection method.'”

Read the full Q&A in the Penn Health-Tech blog.

“New Biosealant Can Stabilize Cartilage, Promote Healing After Injury”

New research from Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering and Director of Penn Medicine’s McKay Orthopaedic Research Laboratory, announces a “new biosealant therapy may help to stabilize injuries that cause cartilage to break down, paving the way for a future fix or – even better – begin working right away with new cells to enhance healing.” Their research was published in Advanced Healthcare Materials. The study’s lead author was Jay Patel, a former postdoctoral fellow in the McKay Lab and now Assistant Professor at Emory University and was contributed to by Claudia Loebel, a postdoctoral research in the Burdick lab and who will begin an appointment as Assistant Professor at the University of Michigan in Fall 2021. In addition, the technology detailed in this publication is at the heart of a new company (Forsagen LLC) spun out of Penn with support from the Penn Center for Innovation (PCI) Ventures Program, which will attempt to spearhead the system’s entry into the clinic. It is co-founded by both Mauck and Patel, along with study co-author Jason Burdick, Professor in Bioengineering, and Ana Peredo, a PhD student in Bioengineering.

Read the story in Penn Medicine News.