Team Ossum is comprosed of Ananya Dewan (Vagelos LSM), Hoang Le (Vagelos LSM), Shiva Teerdhala (Vagelos LSM), Karan Shah (SEAS), and Savan Patel (M&T). Karan and Savan are both bioengineering majors. Their winning pitch to a panel of expert judges proposed “a commercial application to remove obstacles to safe cerclage use in orthopedic fracture fixation with Penn’s steerable needle technology.” Initial work for Ossum’s device, OsPass, was done in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab and interdisciplinary makerspace of the Department of Bioengineering which is open to any Penn students campus-wide.
Team Steed, who proposed “an application to make breast biopsies less painful and damaging,” placed among the competition finalists and included bioengineering majors Farhaanah Mohideen, Ananyaa Kumar, and Kristina Khaw.
We hope you will join us for the Spring 2022 Herman P. Schwan Distinguished Lecture by Dr. Drew Weissman, hosted by the Department of Bioengineering.
Date: Tuesday, March 29, 2022
Time: 3:30-5:00 PM
Location: Bodek Lounge, Houston Hall Reception to follow Zoom Link
Password: schwan22
Speaker:Drew Weissman, M.D., Ph.D.
Roberts Family Professor in Vaccine Research, Department of Medicine
Perelman School of Medicine
University of Pennsylvania
Abstract:
Vaccines prevent 4-5 million deaths a year making them the principal tool of medical intervention worldwide. Nucleoside-modified mRNA was developed over 15 years ago and has become the darling of the COVID-19 pandemic with the first 2 FDA approved vaccines based on it. These vaccines show greater than 90% efficacy and outstanding safety in clinical use. The mechanism for the outstanding immune response induction are the prolonged production of antigen leading to continuous loading of germinal centers and the adjuvant effect of the LNPs, which selectively stimulate T follicular helper cells that drive germinal center responses. Vaccine against many pathogens, including HIV, HCV, HSV2, CMV, universal influenza, coronavirus variants, pancoronavirus, nipah, norovirus, malaria, TB, and many others are currently in development. Nucleoside-modified mRNA is also being developed for therapeutic protein delivery. Clinical trials with mRNA encoded monoclonal antibodies are underway and many other therapeutic or genetic deficient proteins are being developed. Finally, nucleoside-modified mRNA-LNPs are being developed and used for gene therapy. Cas9 knockout to treat transthyretin amyloidosis has shown success in phase 1 trials. We have developed the ability to target specific cells and organs, including lung, brain, heart, CD4+ cells, all T cells, and bone marrow stem cells, with LNPs allowing specific delivery of gene editing and insertion systems to treat diseases such as sickle cell anemia, Nucleoside-modified mRNA will have an enormous potential in the development of new medical therapies.
Bio:
Drew Weissman, M.D., Ph.D. is a professor of Medicine at the Perelman School of Medicine, University of Pennsylvania. He received his graduate degrees from Boston University School of Medicine. Dr. Weissman, in collaboration with Dr. Katalin Karikó, discovered the ability of modified nucleosides in RNA to suppress activation of innate immune sensors and increase the translation of mRNA containing certain modified nucleosides. The nucleoside-modified mRNA-lipid nanoparticle vaccine platform Dr. Weissman’s lab created is used in the first 2 approved COVID-19 vaccines by Pfizer/BioNTech and Moderna. They continue to develop other vaccines that induce potent antibody and T cell responses with mRNA–based vaccines. Dr. Weissman’s lab also develops methods to replace genetically deficient proteins, edit the genome, and specifically target cells and organs with mRNA-LNPs, including lung, heart, brain, CD4+ cells, all T cells, and bone marrow stem cells.
About the Schwan Lecture:
The Herman P. Schwan Distinguished Lecture is in honor of one of the founding members of the Department of Bioengineering, who emigrated from Germany after World War II and helped create the field of bioengineering in the US. It recognizes people with a similar transformative impact on the field of bioengineering.
Carl H. June, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine at Penn Medicine, director of the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy, and member of the Penn Bioengineering Graduate Group at the University of Pennsylvania, has led a new analytical study published in Nature that explains the longest persistence of CAR T cell therapy recorded to date against chronic lymphocytic leukemia (CLL), and shows that the CAR T cells remained detectable at least a decade after infusion, with sustained remission in both patients. June’s pioneering work in gene therapy led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating leukemia and transforming the fight against cancer. His lab develops new forms of T cell based therapies.
Penn Engineering secured a multi-million-dollar contract with Wellcome Leap under the organization’s $60 million RNA Readiness + Response (R3) program, which is jointly funded with the Coalition for Epidemic Preparedness Innovations (CEPI). Penn Engineers aim to create “on-demand” manufacturing technology that can produce a range of RNA-based vaccines.
The Penn Engineering team features Daeyeon Lee, Evan C Thompson Term Chair for Excellence in Teaching and Professor in Chemical and Biomolecular Engineering, Michael Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering, David Issadore, Associate Professor in Bioengineering and Electrical and Systems Engineering, and Sagar Yadavali, a former postdoctoral researcher in the Issadore and Lee labs and now the CEO of InfiniFluidics, a spinoff company based on their research. Drew Weissman of the Perelman School of Medicine, whose foundational research directly continued to the development of mRNA-based COVID-19 vaccines, is also a part of this interdisciplinary team.
The success of these COVID-19 vaccines has inspired a fresh perspective and wave of research funding for RNA therapeutics across a wide range of difficult diseases and health issues. These therapeutics now need to be equitably and efficiently distributed, something currently limited by the inefficient mRNA vaccine manufacturing processes which would rapidly translate technologies from the lab to the clinic.
Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, has been awarded the 2022 Society for Biomaterials (SFB) Young Investigator Award for his “outstanding achievements in the field of biomaterials research.”
The Society for Biomaterials is a multidisciplinary society of academic, healthcare, governmental and business professionals dedicated to promoting advancements in all aspects of biomaterial science, education and professional standards to enhance human health and quality of life.
Mitchell, whose research lies at the interface of biomaterials science, drug delivery, and cellular and molecular bioengineering to fundamentally understand and therapeutically target biological barriers, is specifically being recognized for his development of the first nanoparticle RNAi therapy to treat multiple myeloma, an incurable hematologic cancer that colonizes in bone marrow.
“Before this, no one in the drug delivery field has developed an effective gene delivery system to target bone marrow,” said United States National Medal of Science recipient Robert S. Langer in Mitchell’s award citation. “Mike is a standout young investigator and leader that intimately understands the importance of research and collaboration at the interface of nanotechnology and medicine.”
Academic recipients of the SFB Young Investigator Award should not exceed the rank of Assistant Professor and must not be tenured at the time of nomination. The award includes a $1,000 endowment.
Most organisms have proteins that react to light. Even creatures that don’t have eyes or other visual organs use these proteins to regulate many cellular processes, such as transcription, translation, cell growth and cell survival.
The field of optogenetics relies on such proteins to better understand and manipulate these processes. Using lasers and genetically engineered versions of these naturally occurring proteins, known as probes, researchers can precisely activate and deactivate a variety of cellular pathways, just like flipping a switch.
Now, Penn Engineering researchers have described a new type of optogenetic protein that can be controlled not only by light, but also by temperature, allowing for a higher degree of control in the manipulation of cellular pathways. The research will open new horizons for both basic science and translational research.
Lukasz Bugaj, Assistant Professor in Bioengineering (BE), Bomyi Lim, Assistant Professor in Chemical and Biomolecular Engineering, Brian Chow, Associate Professor in BE, and graduate students William Benman in Bugaj’s lab, Hao Deng in Lim’s lab, and Erin Berlew and Ivan Kuznetsov in Chow’s lab, published their study in Nature Chemical Biology. Arndt Siekmann, Associate Professor of Cell and Developmental Biology at the Perelman School of Medicine, and Caitlyn Parker, a research technician in his lab, also contributed to this research.
The team’s original aim was to develop a single-component probe that would be able to manipulate specific cellular pathways more efficiently. The model for their probe was a protein called BcLOV4, and through further investigation of this protein’s function, they made a fortuitous discovery: that the protein is controlled by both light and temperature.
Earlier this year, Penn President Amy Gutmann and Vijay Kumar, Nemirovsky Family Dean of Penn’s School of Engineering and Applied Science, announced a $100 million commitment to accelerate innovations in medical technologies. Called the Center for Precision Engineering for Health (CPE4H), the initiative aims to bring together researchers from a wide range of fields to develop customizable biomaterials and implantable devices that can be tailored for individualized diagnostics, treatments and therapies.
Now, Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor in Penn Engineering’s Departments of Bioengineering and Chemical and Biomolecular Engineering, has been named CPE4H’s inaugural director.
“Penn is a unique environment where innovations in healthcare can emerge very rapidly, as we’ve seen with the development of CAR-T cancer immunotherapy, and the design and delivery of mRNA vaccines,” Hammer says. “Engineering plays a central role in making those technologies functional and maximizing their impact, and CPE4H is a golden opportunity to take these technologies to the next level in a way that actually helps people.”
Johnson, who has appointments in the Perelman School of Medicine and the School of Engineering and Applied Science, and a secondary appointment in the Annenberg School for Communication, will become the David L. Cohen University Professor.
“David Cohen’s extraordinary leadership at the University and Penn Medicine, and longtime dedication to Philadelphia, has without a doubt shaped the booming campus, health system, and city we so much enjoy today,” says Gutmann. “His dedication is mirrored by the extraordinarily influential, innovative, and committed Dr. Kevin Johnson, whose university professorship will now bear Ambassador Cohen’s name.”
Cohen has served for two decades on Penn’s Board of Trustees and recently concluded a 12-year term as chair. He was confirmed by the U.S. Senate last month as United States Ambassador to Canada, bringing to the role decades of experience as a senior executive at Comcast Corp., chair of the Ballard Spahr law firm, chief of staff to Philadelphia Mayor Ed Rendell, trustee chair at Penn, and major player in a number of other business, civic, political, and philanthropic venues.
In addition to serving as a Trustee, Cohen is a Penn alum, having graduated from what is now the University of Pennsylvania Carey School of Law in 1981. His wife and son also attended the Law School. Cohen’s leadership in the University has been credited with helping guide the growth and advancement of both the University and Health System, in close partnership with both President Gutmann and her predecessor, Judith Rodin.
“It’s an honor to hold a professorship named after Mr. Cohen,” Johnson says. “Throughout his career, he has provided inspired leadership across Penn and our city and region. He is a passionate believer in uniting the public, private, and nonprofit sectors to tackle complex challenges and strengthen communities. Those who know me know that I’ve played a similar role as a pediatrician who works with technology, and who uses digital media to communicate to lay audiences about both. His passion for this city and our University’s educational mission are inspiring.”
N.B.: Johnson also holds a secondary appointment in the Department of Bioengineering. Read his full appointment announcement here.
Penn Health-Tech’s Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize awards $80,000 to support early-stage ideas joining engineering and medicine. The goal of the prize is to encourage collaboration between the University of Pennsylvania’s Perelman School of Medicine and the School of Engineering and Applied Science by supporting innovative ideas that might not receive funding from traditional sources.
This year, the NEMO Prize has been awarded to a team of researchers from Penn Engineering’s Department of Bioengineering. Their project aims to develop a technology that can detect multiple cancer biomarkers in single cells from tumor biopsy samples.
As cancer cells grow in the body, one of the characteristics that influences tumor growth and response to treatment is cancer cell state heterogeneity, or differences in cell states. Methods that rapidly catalogue cell heterogeneity may be able to detect rare cells responsible for tumor growth and drug resistance.
Single-cell transcriptomics (scRNA-seq) is the standard method for studying cell states; by amplifying and analyzing the cell’s complement of RNA sequences at a given time, researchers can get a snapshot of what proteins the cell is in the process of making. However, this method does not fully capture the function of the cell. The field of proteomics, which captures the actual protein content of cells along with post-translational modifications, provides a better picture of the cell’s function, but single-cell proteomic methods with the same sensitivity as scRNA-seq do not currently exist.
This collaborative project, which joins Assistant Professors Alex Hughes and Lukasz Bugaj, as well as Professor Andrew Tsourkas, aims to change that by developing multiplexed, sensitive and highly specific single-cell proteomics technologies to advance our understanding of cancer, its detection and its treatment.
This new technology, called scProteome-seq, builds from Hughes’s previous work.
“My specific expertise here is as an inventor of single-cell western blotting, which is the core technology that our team is building on,” says Hughes. “Single-cell proteomics technologies of this type have a track-record of commercial translation for applications in basic science and clinical automation, so our approach has a high potential for real-world impact.”
The current technology from Hughes’ lab separates proteins in cells by their molecular weight and “blots” them on a piece of paper. Improvements to this technology included in this project will remove the limitation of using light-emitting dyes to detect different proteins and instead use DNA barcodes to differentiate them.
Our final Penn Bioengineering seminar of the fall semester will take place this Thursday. Keep an eye on the BE events calendar for upcoming spring seminars.
Speaker: Bijan Pesaran, Ph.D.
Professor
Neural Science
New York University
Date: Thursday, December 16, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
Room: Moore 216
Abstract: Neural engineering is enjoying an era of transformative growth. Classical methods that dominated the neurosciences for decades are being replaced by powerful new technologies. In this talk, I will discuss how to engineer electrical and optical interfaces to the primate brain. I will first present work on electrode interfaces that stimulate and record at the surface of and within the brain. I will show how simultaneously measuring and manipulating neurons immediately beneath electrode contacts during behavior delivers ground-truth data. The results have implications for electrode interface design and new generations of implantable biomedical devices. I will then turn to optical neural interfaces. Two-photon fluorescence microscopy images the activity of neurons expressing genetically-encoded calcium indicators and is most often performed in small animal models, such as the mouse, worm and fly. I will present a cellular-resolution robotic imaging platform to investigate the non-human primate brain at scale. I will finish by discussing potential applications of this technology to a range of scientific and clinical goals.
Bijan Pesaran Bio: Bijan Pesaran is interested in understanding large-scale circuits in the primate brain and how to engineer novel brain-based therapies. Bijan completed his undergraduate degree in Physics at the University of Cambridge, UK. After a year in the Theoretical Physics department at Bell Labs Murray Hill, he went on to earn his PhD in Physics at the California Institute of Technology. He then made the switch to neuroscience as a postdoctoral fellow in Biology at Caltech. Bijan has been on the faculty at New York University since 2006. He is currently a Professor of Neural Science in the Center for Neural Science. In 2013, he was a CV Starr Visiting Scholar at the Princeton Neuroscience Institute at Princeton University. Among other honors and awards, Bijan has received a Burroughs-Wellcome Career Award in the Biomedical Sciences, a Sloan Research Fellowship, a McKnight Scholar Award, the National Science Foundation CAREER Award and is a member of the Simons Collaboration for the Global Brain.