Manuela Raimondi Appointed Visiting Professor in Bioengineering

Manuela Raimondi, PhD

Manuela Teresa Raimondi was appointed Visiting Professor in Bioengineering in the Associated Faculty of the School of Engineering and Applied Science for the 2020-2021 academic year. Raimondi received her Ph.D. in Bioengineering in 2000 from Politecnico di Milano, Italy. She is currently a Full Professor of Bioengineering at Politecnico di Milano in the Department of Chemistry, Materials and Chemical Engineering “G. Natta”, where she teaches the course “Technologies for Regenerative Medicine” in the Biomedical Engineering graduate program.

Raimondi is the founder and Director of the Mechanobiology Lab and of the Interdepartmental Live Cell Imaging lab. She has pioneered the development of cutting edge tools for cell modelling, ranging from micro-engineered stem cell niches, to miniaturized windows for in vivo intravital imaging, to microfluidic culture systems to engineer tissue-equivalents and organoids for cell modelling and drug discovery. Her platforms are currently commercialized by her start-up, MOAB srl. Her research is funded by the European Research Council (ERC), by The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), by the European Commission, and by the European Space Agency.

“Getting to Penn was quite the challenge with the various travel restrictions and the pandemic, but I am used to overcoming adverse odds and I am really excited to be here now,” says Dr. Raimondi. “In this challenging time, when many new barriers are coming up, I think building bridges and new scientific collaborations is even more important. I very much look forward to being part of the Penn research community.”

Dr. Raimondi with host Riccardo Gottardi, PhD on Smith Walk

During her sabbatical at Penn, Raimondi is investigating her hypothesis that stem cells pluripotency reprogramming can be guided by mechanical cues. Over the past five years, she has cultured many different stem cell types in the “Nichoids,” the synthetic stem cell niche she developed, and gathered robust evidence on how physical constraints at the microscale level upregulate pluripotency. Raimondi is hosted in the Bioengineering and Biomaterials Lab of Riccardo Gottardi, Assistant Professor in Bioengineering and in Pediatrics at the Perelman School of Medicine, where she is helping to refine human stem cell sources that could be minimally manipulated for translational tissue engineering for a safe and effective use in regenerative therapies, as a key issue for clinical translation is the maintenance or enhancement of multipotency during cell expansion without exogenous agents or genetic modification.

“Dr. Raimondi is a trailblazer in Italy in regenerative medicine who has introduced many new concepts in a sometimes musty academic environment and has shattered a number of glass ceilings,” says Dr. Gottardi. “I think her sabbatical at Penn is a great opportunity for her and for the Penn community to build new and exciting trans-Atlantic collaborations.”

BE Seminar: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia” (Emery Brown)

Emery Brown, MD, PhD

Speaker: Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering and of Computational Neuroscience, MIT
Warren M. Zapol Professor of Anaesthesia, Harvard Medical School
Massachusetts General Hospital

Date: Thursday, April 1, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia”

Abstract:

General anesthesia is a drug induced state that is critical for safely and humanely allowing a patient to undergo surgery or an invasive diagnostic procedure. During the last 10 years the study of the neuroscience of anesthetic drugs has been an active area of research. In this lecture we show how anesthetics create altered states of arousal by creating oscillation that impede how the various parts of the brain communicate. These oscillations, which are readily visible on the electroencephalogram (EEG), change systematically with anesthetic dose, anesthetic class and patient age. We will show how the EEG oscillations can be used to monitor the brain states of patients receiving general anesthesia, manage anesthetic delivery and learn about fundamental brain physiology.

EMERY BROWN BIO:

Emery N. Brown is the Edward Hood Taplin Professor of Medical Engineering and Professor of Computational Neuroscience at Massachusetts Institute of Technology. He is the Warren M. Zapol Professor of Anaesthesia at Harvard Medical School and Massachusetts General Hospital (MGH), and an anesthesiologist at MGH.

Dr. Brown received his BA (magna cum laude) in Applied Mathematics from Harvard College, his MA and PhD in statistics from Harvard University, and his MD (magna cum laude) from Harvard Medical School. He completed his internship in internal medicine at the Brigham and Women’s Hospital and his residency in anesthesiology at MGH. He joined the staff at MGH, the faculty at Harvard Medical School in 1992 and the faculty at MIT in 2005.

Dr. Brown is an anesthesiologist-statistician recognized for developing signal processing algorithms for neuroscience data analysis and for defining the neurophysiological mechanisms of general anesthesia.

Dr. Brown was a member of the NIH BRAIN Initiative Working Group. He is a fellow of the IEEE, the AAAS, the American Academy of Arts and Sciences and the National Academy of Inventors. Dr. Brown is a member of the National Academy of Medicine, the National Academy of Sciences and the National Academy of Engineering. He received an NIH Director’s Pioneer Award, the National Institute of Statistical Sciences Sacks Award, the American Society of Anesthesiologists Excellence in Research Award, the Dickson Prize in Science, the Swartz Prize for Theoretical and Computational Neuroscience and a Doctor of Science (honoris causa) from the University of Southern California.

Kevin Johnson Appointed Penn Integrates Knowledge University Professor

Ron Ozio

Kevin Johnson, Penn’s 27th Penn Integrates Knowledge University Professor.

Kevin Johnson has been named the University of Pennsylvania’s 27th Penn Integrates Knowledge University Professor.

The announcement was made by Penn President Amy Gutmann and Provost Wendell Pritchett.

A pioneer of medical information technologies to improve patient safety, Johnson will hold joint appointments in the Department of Biostatistics, Epidemiology, and Informatics in the Perelman School of Medicine and the Department of Computer and Information Science in the School of Engineering and Applied Science, with secondary appointments in the Annenberg School for Communication and in the Department of Bioengineering. He will also serve as vice president for applied informatics in the University of Pennsylvania Health System and professor of pediatrics at the Children’s Hospital of Philadelphia.

“Kevin Johnson is a gifted physician-scientist,” Gutmann said, “who has harnessed and aligned the power of medicine, engineering, and technology to improve the health of individuals and communities. He has championed the development and implementation of clinical information systems and artificial intelligence to drive medical research, encouraged the effective use of technology at the bedside, and empowered patients to use new tools to better understand how medications and supplements may affect their health. He is a board-certified pediatrician, and his commitment to patient health and welfare knows no age limits. In so many different settings, Kevin’s work is driving progress in patient care and improving our health care system. He is a perfect fit for Penn, where our goal is to create a maximally inclusive and integrated academic community to spur unprecedented global impact.”

Johnson is currently the Cornelius Vanderbilt Professor and chair of the Department of Biomedical Informatics at the Vanderbilt University School of Medicine, where he has taught since 2002. He is a world-renowned innovator in developing clinical information systems that improve best practices in patient safety and compliance with medical practice guidelines, especially the use of computer-based documentation systems and other digital technologies. His research bridges biomedical informatics, bioengineering, and computer science. As senior vice president for health information technology at the Vanderbilt University Medical Center from 2014 to 2019, he led the development of clinical systems that enabled doctors to make better treatment and care decisions for individual patients, in part by alerting patients as to how medications or supplements might affect their body chemistry, as well as new systems to integrate artificial intelligence into patient care workflows and to unify and simplify all the Medical Center’s clinical and administrative systems.

The author of more than 150 publications, books, or book chapters, Johnson has held numerous leadership positions in the American Medical Informatics Association and the American Academy of Pediatrics, leads the American Board of Pediatrics Informatics Advisory Committee, directs the Board of Scientific Counselors of the National Library of Medicine, and is a member of the NIH Council of Councils. He has been elected to the National Academy of Medicine (Institute of Medicine), American College of Medical Informatics, and Academic Pediatric Society and has received awards from the Robert Wood Johnson Foundation and American Academy of Pediatrics, among many others.

“Kevin Johnson exemplifies our most profound Penn values,” Pritchett said. “He is a brilliant innovator committed to bringing together disciplines across traditional boundaries. Yet he always does so in the service of helping others, finding technological solutions that can make a tangible impact on improving people’s lives. He will be an extraordinary colleague, teacher and mentor across multiple areas of our campus in the years to come.”

Johnson earned an M.D. from the Johns Hopkins University School of Medicine, an M.S. in medical informatics from Stanford University, and a B.S. with honors in biology from Dickinson College. He became the first Black chief resident in pediatrics at Johns Hopkins in 1992, and was a faculty member in both pediatrics and biomedical information sciences at Johns Hopkins until 2002.

The Penn Integrates Knowledge program was launched by Gutmann in 2005 as a University-wide initiative to recruit exceptional faculty members whose research and teaching exemplify the integration of knowledge across disciplines and who are appointed in at least two Schools at Penn.

Originally posted in Penn Today.

Penn Bioengineers Develop Implantable Living Electrodes

Living Electrode Panels (image courtesy of the Cullen Lab)

Connecting the human brain to electrical devices is a long-standing goal of neuroscientists, bioengineers, and clinicians, with applications ranging from deep brain stimulation (DBS) to treat Parkinson’s disease to more futuristic endeavors such as Elon Musk’s NeuraLink initiative to record and translate brain activity. However, these approaches currently rely on using implantable metallic electrodes that inherently provoke a lasting immune response due to their non-biological nature, generally complicating the reliability and stability of these interfaces over time. To address these challenges, D. Kacy Cullen, Associate Professor in Neurosurgery and Bioengineering, and Dayo Adewole, a doctoral candidate in Bioengineering, worked with a multi-disciplinary team of collaborators to develop the first “living electrodes” as an implantable, biological bridge between the brain and external devices. In a recent article published in Science Advances, the team demonstrated the fabrication of hair-like microtissue comprised of living neuronal networks and bundled tracts of axons the signal sending fibers of the nervous system protected within soft hydrogel cylinders. They showed that these axon-based living electrodes could be fully controlled and monitored with light thus eliminating the need for electrical contact and are capable of surviving and forming synapses with the brain as demonstrated in an adult rat model. While further advancements are necessary prior to clinical use, the current findings provide the foundation for a new class of “living electrodes” as a biological intermediary between humans and devices capable of leveraging natural mechanisms to potentially provide a stable interface for clinical applications.

Cullen has a primary appointment in the Department of Neurosurgery in the Perelman School of Medicine, with a secondary appointment in the Department of Bioengineering in the School of Engineering and Applied Science, and an appointment in the Corporal Michael J. Crescenz VA Medical Center in Philadelphia.

Maria Ovando: Research and Self-discovery

by Elisa Ludwig

Maria Ovando

The process of discovery sometimes starts with a hunch. Maria Ovando arrived at Penn Engineering with an affinity for math and science, extensive experience volunteering at her local health clinic and an assumption that she was preparing for a career in medicine. She was drawn to Penn Engineering because of the flexibility in the curriculum and the ability to both tailor her course of study and pursue cross-disciplinary subjects.

As a pre-med student, bioengineering seemed to be the natural choice for a major, but during her freshman year, Ovando found that she genuinely enjoyed bioengineering as a discipline in its own right, and only then did her future goals come into view.

“I’ve discovered that I have a passion for research, working on low-cost devices that can have a direct impact on individuals,” she says.

One of the most important opportunities she’s had at Penn is her work with Dr. Michelle J. Johnson at the Rehabilitation Robotics Lab in the Perelman School of Medicine. There, Ovando has been working to improve aspects of the Community-based Affordable Robot Exercise System, which helps stroke patients with lower extremity impairment. She’s also worked on a project that involved analyzing and reevaluating data in the early detection of cerebral palsy in infants. As an undergraduate, she found it both meaningful and moving to have a role in this groundbreaking research.

Read the full story in Penn Engineering today.

BE/MEAM Seminar: “Microbes in Biomechanics” (Christopher J. Hernandez)

Speaker: Christopher J. Hernandez, Ph.D.
Professor, Sibley School of Mechanical and Aerospace Engineering, Cornell University
Adjunct Scientist, Hospital for Special Surgery

Date: Thursday, February 4, 2021
Time: 3:00-4:00 PM EST
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Microbes in Biomechanics”

This seminar is jointly hosted by the Department of Bioengineering and the Department of Mechanical Engineering and Applied Mechanics.

Abstract:

The idea that mechanical stresses influence the growth and form of organs and organisms originated in the 1800s and is the basis for the modern study of biomechanics and mechanobiology. Biomechanics and mechanobiology are well studied in eukaryotic systems, yet eukaryotes represent only a small portion of the diversity and abundance of life on Earth. Bacteria exhibit broad influences on human health (as both pathogens and as beneficial components of the gut microbiome) and processes used in biotechnology and synthetic biology. Over the past eight years my group has explored mechanobiology within individual bacteria and the effects of changes in the composition of commensal bacterial communities on the biomechanics in the musculoskeletal system.

The ability of the bacteria to not only resist mechanical loads (biomechanics) but also to respond to changes in the mechanical environment (mechanobiology) is necessary for survival. Here I describe a novel microfluidic platform used to explore the biomechanics and mechanobiology of individual, live bacteria. I discuss work from my group demonstrating that mechanical stress within the bacterial cell envelope can influence the assembly and function of multicomponent efflux pumps used by bacteria to resist toxins and antibiotics. Additionally, I share some of our more recent work showing that mechanical stress and strain within the bacterial cell envelope can stimulate a bacterial two-component system controlling gene expression. Our findings demonstrate that bacteria, like mammalian cells, have mechanosensitive systems that are key to survival.

In musculoskeletal disease, bacteria are commonly viewed as sources of infection. However, in the past decade the studies by my group and others have suggested that commensal bacteria – the microbiome – can modulate the pathogenesis of musculoskeletal disorders. My group is among the first to study the effects of the gut microbiome on orthopaedic disorders. Here I provide an introduction to the microbiome and current concepts of how modifications to the gut microbiome could influence the musculoskeletal system. Specifically, I discuss studies from my group which are the first to demonstrate that the gut microbiome influences bone biomechanics and the development of infection of orthopaedic implants.

Bio:

Dr. Hernandez is Professor in the Sibley School of Mechanical and Aerospace Engineering at Cornell University and is an Adjunct Scientist at the Hospital for Special Surgery. Dr. Hernandez is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE), the American Society of Mechanical Engineers (ASME), and the American Society for Bone and Mineral Research (ASBMR). He is the 2018 recipient of the Fuller Albright Award for Scientific Excellence from the American Society for Bone and Mineral Research. He has served on the Board of Directors of the Orthopaedic Research Society and the American Society for Bone and Mineral Research. His laboratory’s research currently focuses on the effects of the microbiome on bone and joint disorders, periprosthetic joint infection and the biomechanics and mechanobiology of bacteria.

hernandezresearch.com

Ruby Washington: Poised to Make Her Mark in Bioengineering

by

Ruby Washington

Data show that healthcare disparities plague the Black community in America, making it harder to receive adequate treatment and care. But rather than just accepting the status quo, Ruby Washington, senior in the Department of Bioengineering, is dedicated to leveraging her interest in biomedicine to change outcomes and systems.

“I feel that I have a duty to help my community and make the healthcare system better for people who look like me,” she says.

That’s a challenge well suited to a woman who is both fascinated by the intersection of materials science and biology and dedicated to representing and leading a community of Black engineers.

Read the full story at Penn Engineering Today.

Student Spotlight: David Alanis Garza

David Alanis Garza (BSE & BS 2021)

The Penn Bioengineering student spotlight series continues with David Alanis Garza. David is a senior from Monterrey, Mexico finishing his dual degree in Bioengineering in the School of Engineering and Applied Sciences and Health Care Management at the Wharton School, with minors in Chemistry and Math. He currently serves as the Captain of the Medical Emergency Response Team (MERT), managing clinical operations and the organization’s response to COVID-19. He is also a Penn tour guide and a member of the Sigma Phi Epsilon fraternity. In his free time, he enjoys mountain climbing, camping, and playing guitar.

What drew you to the field of Bioengineering?

I first became interested in BE during my high school physics class, in which my teacher motivated our lesson in electromagnetism by explaining the basics behind an MRI machine and how defibrillators are basically glorified capacitors. I realized that my lifelong dream to be a surgeon would best be served if I armed myself with a scalpel and screwdriver alike. With the fast paced advances in the medical field, the best physicians must not only understand the underlying pathophysiology of disease, but also how to interact with and keep up with innovations in the biomedical engineering field. At Penn, I have enjoyed discovering that BE is much more wide than what I initially appreciated.

Have you ever done research with a professor on campus? What did you like, and what didn’t you like about it?

I have had the opportunity to work in the Center for Resuscitation Science on a research project investigating diagnostic patterns in the electrocardiogram of Pulseless Electrical Activity (PEA). I truly enjoyed the opportunity to take on more responsibility as the first author of the manuscript we are currently working on, and learned so much about communication in science when presenting the research during American Heart Association’s Resuscitation Science Symposium this last weekend. What I learned in Bioengineering, especially in BE 309/310 (Lab) and BE 301 (Signals and Systems), has been incredibly useful for my research. I am also currently completing a Wharton senior thesis exploring how financial derivative securities could be used to hedge risk in emergency departments. Penn is incredibly supportive of students seeking to gain more research experience, offering an abundance of opportunities for guided and independent projects. I truly enjoyed the opportunity of finding answers to very specific questions in my fields, as well as the valuable relationships with my mentors I formed along the way.

What have been some of your favorite courses and/or projects in Bioengineering so far?

BE 305 (Engineering Principles of Human Physiology) has been my favorite course at Penn. In this class, we were able to understand, quantify, and hack the body’s physiology through an engineering lens. From building a pulseoximeter with our phone cameras, to determining the blood volume of the left ventricle over time with MRI images, this class was very much hands on. A close second is BE 301 (Bioengineering Signals and Systems). I hadn’t previously grasped how this discipline was relevant to medicine until this class, but now I find myself applying what I learned in my research. Lastly, as many other BE students will tell you, the human-cockroach machine interface project in BE lab has been one of my most challenging and rewarding undertakings at Penn. Our team linked a wearable device that measured the forearms position and muscle contractions, so that when the wearer painted a picture, a cockroach leg would be moved and stimulated to paint an imitation of the image. Overcoming my phobia of cockroaches and the countless hours of trial and error were all worth it, for I can now brag about how my team made an artist out of a cockroach leg.

What advice would you give to your freshman self?

It is a great idea to identify which area of BE research you are interested in, and plan your academics so that you can take the closely related courses early on. This will empower you to conduct research with greater responsibilities or give you marketable skills that employers may look for when hiring for internships of your interest. BE upperclassmen are always willing to help, so feel free to reach out to us for any advice.

What do you hope to pursue after obtaining your undergraduate degree?

I will be taking a gap year in which I will be working in the area of hospital administration and clinical engineering before I begin my medical school journey. As of right now, I am interested in specializing in emergency medicine or surgery, but I know my interests may change as my understanding of medicine grows throughout the next years.

Have you done or learned anything new or interesting during quarantine?
The COVID pandemic gave me a unique opportunity to manage the clinical operations of MERT’s emergency medical services during an unprecedented challenge. As a result, I learned a lot about how different hospitals and health care systems are managing their response, not to mention the standard protocols to ensure the safety and wellness of our patients and providers. On a less professional note, I have been able to get a bit better at chess and guitar.

Using Lung-on-a-chip Technology to Find Treatments for Chlorine Gas Exposure

Huh’s organ-on-a-chip devices contain human cells, allowing for experiments that could not otherwise be practically or ethically performed.

Chlorine gas is a commonly used industrial chemical. It is also highly toxic and potentially deadly; it was used as a chemical weapon in both World War I and the Syrian Civil War and has led to multiple deaths from industrial accidents. Mixing certain household cleaners can also produce the toxic gas, leading to lasting lung injuries for which there are currently no effective treatments.

Now, researchers at Penn Engineering and Penn’s Perelman School of Medicine are collaborating with BARDA, the U.S. Office of Health and Human Services’ Biomedical Advanced Research and Development Authority, to address this need using their lung-on-a-chip technology.

The laboratory of Dan Huh, associate professor in the Department of Bioengineering, has developed a series of organ-on-a-chip platforms. These devices incorporate human cells into precisely engineered microfluidic channels that mimic an organ’s natural environment, providing a way to conduct experiments that would not otherwise be feasible.

Dan Huh
Dan Huh, PhD

Huh’s previous research has involved using a placenta-on-a-chip to study which drugs are able to reach a developing fetus; investigating microgravity’s effect on the immune system by sending one of his chips to the International Space Station; and testing treatments for dry eye disease using an eye-on-a-chip, complete with a mechanical blinking eyelid.

Read the full story on Penn Engineering Today. Media contact Evan Lerner.

Yale Cohen and Douglas Smith Awarded 2020 Penn Medicine Awards of Excellence

Yale Cohen, Ph.D.
Douglas H. Smith, M.D.

The Perelman School of Medicine has announced the winners of the 2020 Penn Medicine Awards of Excellence. The Office of the Dean says:

“These awardees exemplify our profession’s highest values of scholarship, teaching, innovation, commitment to service, leadership, professionalism and dedication to patient care. They epitomize the preeminence and impact we all strive to achieve. The awardees range from those at the beginning of their highly promising careers to those whose distinguished work has spanned decades.

Each recipient was chosen by a committee of distinguished faculty from the Perelman School of Medicine or the University of Pennsylvania. The contributions of these clinicians and scientists exemplify the outstanding quality of patient care, mentoring, research, and teaching of our world-class faculty.”

Two faculty members affiliated with Penn Bioengineering are among this year’s recipients.

Yale Cohen, PhD, Professor of Otorhinolaryngology with secondary appointments in Neuroscience and Bioengineering, is the recipient of the Jane M. Glick Graduate Student Teaching Award. Cohen is an alumnus of the Penn Bioengineering doctoral program and is currently the department’s Graduate Chair.

“Dr. Cohen’s commitment to educating and training the next generation of scientists exemplifies the type of scientist and educator that Jane Glick represented. His students value his highly engaging and supportive approach to teaching, praising his enthusiasm, energy, honesty, and compassion.”

Douglas H. Smith, MD, Robert A. Groff Endowed Professor of Research and Teaching in Neurosurgery and member of the Penn Bioengineering Graduate Group, is the recipient of this year’s William Osler Patient Oriented Research Award:

“Dr. Smith is the foremost authority on diffuse axonal injury (DAI) as the unifying hypothesis behind the short- and long-term consequences of concussion.  After realizing early in his career that concussion, or mild traumatic brain injury (TBI), was a much more serious event than broadly appreciated, Dr. Smith and his team have used computer biomechanical modeling, in vitro and in vivo testing in parallel with seminal human studies to elucidate mechanisms of concussion.”

Read the full story in Penn Medicine Communications.