Getting Physical with Developmental Biology Research

macrophages Discher
Dennis Discher, Ph.D.

By Izzy Lopez

While genetics and biochemistry research has dominated the conversation about how human bodies are formed, new research — with an old twist — is proposing that there is another star in the show of human development: mechanical forces.

At the turn of the twentieth century, medical research relied on simple mechanics to explain scientific phenomena, including how human cells morph into shape from embryo to newborn and beyond. As better chemistry techniques and DNA research burst onto the scene, however, the idea that cells could be affected by physical forces took a back seat. Now researchers are referring back to this vintage idea and bringing it into the 21st century.

Dennis Discher, Robert D. Bent Professor in the Departments of Chemical and Biomolecular Engineering, Bioengineering and Mechanical Engineering and Applied Mechanics, was featured in a recent article in Knowable Magazine for his research on the human heart and how mechanical forces exerted on heart cells give the vital organ its necessary stiffness during development.

Read the full story on the Penn Engineering blog.

BE Seminar Series: March 5th with Tara L. Deans, Ph.D.

Our next Penn Bioengineering seminar will be held this Thursday. We hope to see you there!

Speaker: Tara L. Deans, Ph.D.
Assistant Professor
Biomedical Engineering
University of Utah

Date: Thursday, March 5, 2020
Time: 12:00-1:00 pm
Location: Room 337, Towne Building

Title: “Engineering Stem Cells to Create Novel Delivery Vehicles”

 

Abstract:

Synthetic biology has transformed how cells can be reprogrammed, providing a means to reliably and predictably control cell behavior with the assembly of genetic parts into more complex gene circuits. Using approaches and tools in synthetic biology, we are programming stem cells with novel genetic tools to control genes and pathways that result in changes in stem cell fate decisions, in addition to reprogramming terminally differentiated cells to function as unique therapeutic diagnostic and delivery vehicles.

Bio:

Dr. Tara Deans received her PhD from Boston University in Biomedical Engineering. Following her postdoctoral training at Johns Hopkins University, she became an Assistant Professor in Biomedical Engineering at the University of Utah. Currently, Dr. Deans runs an applied mammalian synthetic biology laboratory where her lab focuses on building novel genetic tools to study the mechanisms of stem cell differentiation for the purpose of directing cell fate decisions. Recently, Dr. Deans received four prestigious awards to support this area of research: the NSF CAREER Award, the Office of Naval Research (ONR) Young Investigator Award, the NIH Trailblazer Award and an NIH Director’s New Innovator Award. In addition to her research, Dr. Deans was recently named a STEM Ambassador in the STEM Ambassador Program (STEMAP) at the University of Utah to engage underrepresented groups in STEM fields.

BE Seminar Series: February 27th with Michael Yaszemski, M.D., Ph.D.

Our next Penn Bioengineering seminar will be held this Thursday. We hope to see you there!

Michael Yaszemski, M.D., Ph.D.

Speaker: Michael Yaszemski, M.D., Ph.D.
The Krehbiel Endowed Professor of Orthopedic Surgery and Biomedical Engineering
Mayo Clinic

Date: Thursday, February 27, 2020
Time: 12:00-1:00 pm
Location: Room 337, Towne Building

Title: “Musculoskeletal Tissue Engineering”

 

Abstract:

The field of Tissue Engineering/Regenerative Medicine is replete with advances that have been translated to human use. However, our job is not done when a treatment for a specific disease or traumatic event has been invented and translated to humans. In order to be available to the population nationwide (or globally), our novel treatment must be manufactured, transported to the user, and administered by a physician to that user. In addition, novel treatments for rare diseases may not be amenable to manufacture by a company, and perhaps would be best manufactured by an academic medical center. I will discuss these issues that occur after successful translation of a novel treatment to human use, as well as potential strategies to address them.

Bio:

Dr. Michael Yaszemski is the Krehbiel Family Endowed Professor of Orthopedic Surgery and Biomedical Engineering at Mayo Clinic and director of its Polymeric Biomaterials and Tissue Engineering Laboratory. He is a retired USAF Brigadier General. He has served as the president of the Mayo medical staff. He received both bachelor’s and master’s degrees in chemical engineering from Lehigh University in 1977 and 1978, an M.D. from Georgetown University in 1983 and a Ph.D. in chemical engineering from Massachusetts Institute of Technology in 1995.  He served as a member of the Lehigh University Board of Trustees.

How the Bioengineering Department’s Bio-MakerSpace Became a Hub for Start-Ups

by Sophie Burkholder

The George H. Stephenson Foundation Educational Laboratory and Bio-MakerSpace, more commonly known as the Bio-MakerSpace, has recently become a hub for Penn student start-ups that continue after graduation. Beyond offering a home base for projects by Bioengineering majors, the lab is also open to Penn students, regardless of major. Unlike other departmental undergraduate labs, the Bio-MakerSpace encourages interdisciplinary projects and collaborations from students across  all different majors.

Even better, the lab has a neutral policy when it comes to intellectual property (IP), meaning all IP behind student projects belongs to the students instead of the lab or the engineering school. With a wide variety of prototyping equipment, coding and software programs installed on lab computers, and an extremely helpful lab staff, the Bio-MakerSpace provides students of all academic backgrounds the resources to turn their ideas into realities or even businesses, as a recent succession of start-ups founded in the lab has shown.

One of the most successful start-ups to come out of the Bio-MakerSpace in the last few years is Group K Diagnostics, founded by 2017 Bioengineering alumna Brianna Wronko. The company focuses on the use of a point-of-care diagnostic device called KromaHealthTM. Offering a variety of different tests based on the input of a small amount of blood, serum, or urine, the device induces a color change through a series of reactions that can be detected through image processing. Developed in part from Wronko’s senior design project (hence the name “Group K”) and in part from her experience working at an HIV clinic, Group K Diagnostics looks to expand access to care for all populations.

But not all start-ups from the Bio-MakerSpace have origins in senior design projects. Three start-ups from 2019, two of which won the Penn President’s Innovation Prize, all began as independent initiatives from students. InstaHub, founded by 2019 Wharton alumnus Michael Wong with help from Bioengineering doctoral candidate Dayo Adewole, is a company that focuses on the use of snap-on automation for light energy conservation. A simple and easy-to-install device with motion and occupancy sensors, InstaHub aims to reduce energy consumption in a way that’s simpler and cheaper than rewiring projects that might otherwise be required. Here, Adewole shares the way that access to the Bio-MakerSpace provided InstaHub with a helpful platform.

The second start-up from 2019 to come out of the Bio-MakerSpace and win a President’s Innovation Prize is Strella Biotechnology, founded by recent graduate Katherine Sizov (Biology 2019). In developing sensors with the ability to detect ethylene gas emitted by rotting fruits, Strella hopes to reduce the immense amount of food waste due to produce simply going bad in storage. With a patent-pending biosensor that mimics the way ripe fruits detect ethylene emissions of nearby rotting fruits, the technology behind Strella involves both biology and aspects of engineering. In this video, Sizov herself talks about the way that the Bio-MakerSpace opened its doors to her, and allowed her work to really take off with the help of resources she wouldn’t have easily found otherwise.

Yet another start-up to use the Bio-MakerSpace as a launch pad for innovation is BioAlert Technologies, comprised of a group of Penn engineering undergraduate and graduate students, including 2019 Bioengineering alumnus Johnny Forde and current Biotechnology student Marc Rosenberg, who is the startup’s CEO and founder. BioAlert’s innovations are in what they call continuous infection monitoring (CIM) systems, designed to detect infections in patients with diabetic foot ulcers. Often, even when properly bandaged by a doctor, these ulcers run the risk of bacterial infection once a patient returns home and continues to care for the wound. BioAlert uses their platform to assess whether or not a bacterial infection might occur in a given patient’s wound, and uses an app to alert both patients and doctors of it, so that patients can receive the proper response treatment and medication as quickly as possible.

Though each of these start-ups used the resources of the Bio-MakerSpace, they are each interdisciplinary approaches to solving real-world problems today. Paired with other student resources at Penn like courses offered under an Engineering Entrepreneurship minor, knowledge from the nearby Wharton business school professors, and competitions like the Rothberg Catalyzer, the Bio-MakerSpace allows for any student to transform their idea into a reality, and potentially take it to market.

Interested in learning more? Contact the BE Labs.

Computer-generated Antibiotics, Biosensor Band-Aids, and the Quest to Beat Antibiotic Resistance

By Michele W. Berger

Imagine if a computer could learn from molecules found in nature and use an algorithm to generate new ones. Then imagine those molecules could get printed and tested in a lab against some of the nastiest, most dangerous bacteria out there — bacteria quickly becoming resistant to our current antibiotic options.

Or consider a bandage that can sense an infection with fewer than 100 bacterial cells present in an open wound. What if that bandage could then send a signal to your phone letting you know an infection had started and asking you to press a button to trigger the release of the treatment therapy it contained?

These ideas aren’t science fiction. They’re projects happening right now, in various stages, in the lab of synthetic biologist , who joined the University as a Presidential Professor in May 2019. His ultimate goal is to develop the first computer-made antibiotics. But beyond that, his lab — which includes three postdoctoral fellows, a visiting professor, and a handful of graduate students and undergrads — has many other endeavors that sit squarely at the intersection of computer science and microbiology.

Computer-generated antibiotics

Antibiotic resistance is becoming a dangerous problem, both in the United States and worldwide. According to the , each year in the U.S., at least 2.8 million people get infections that antibiotics can’t help, and more than 35,000 die from those infections. Around the world, common ailments like pneumonia and food-borne illness are getting harder to treat.

De la Fuente poses near Penn’s “Biopond”
De la Fuente earned his bachelor’s degree in biotechnology, then a doctorate in microbiology and immunology and a postdoc in synthetic biology and computational biology. Combining these fields led him to the innovative work his lab does today.

New antibiotics are needed, and according to de la Fuente, it’s time to look beyond the traditional approach.

“We’ve relied on nature as a source of antibiotics for many, many years. My whole hypothesis is that nature has perhaps run out of inspiration,” says de la Fuente, who has appointments in the and the . “We haven’t been able to discover any new scaffolds for many years. Can we digitize that information, nature’s chemistry, to be able to create and discover new molecules?”

To do that, his team turned to amino acids, the building blocks of protein molecules. The 20 that occur naturally bond in countless sequences and lengths, then fold to form different proteins. The sequencing possibilities are expansive, more than the number of stars in the universe. “We could never synthesize all of them and just see what happens,” says postdoc Marcelo Melo. “We have to combine the chemical knowledge — decades of chemistry on these tell us how they behave — with the computational side, because a computer can find patterns unlike any human could.”

Using machine learning, the researchers provide the computer with natural molecules that successfully work against bacteria. The computer learns from those examples, then generates new, artificial molecules. “We try this back and forth and hopefully we find patterns, new patterns that we can explore, instead of blindly searching,” Melo says.

The computer can then test each artificial sequence virtually, setting aside the most successful components and tossing the rest, in a form of computational natural selection. Those pieces with the highest potential get used to create new sequences, theoretically producing better and better ones each time.

De la Fuente’s team has seen some promising results already: “A lot of the molecules we’ve synthesized have worked,” he says. “The best ones worked in animal models. They were able to reduce infections in mice — which was pretty cool, given that the computer generated the whole thing.” Still, de la Fuente says the work is years away from producing anything close to a shelf-ready antibiotic.

Continue reading on .

Penn Nanoparticles are Less Toxic to T Cells Engineered for Cancer Immunotherapy

An artist’s illustration of nanoparticles transporting mRNA into a T cell (blue), allowing the latter to express surface receptors that recognize cancer cells (red). (Credit: Ryan Allen, Second Bay Studios)

New cancer immunotherapies involve extracting a patient’s T cells and genetically engineering them so they will recognize and attack tumors. This type of therapy is not without challenges, however. Engineering a patient’s T cells is laborious and expensive. And when successful, the alterations to the immune system immediately make patients very sick for a short period of time, with symptoms including fever, nausea and neurological effects.

Now, Penn researchers have demonstrated a new engineering technique that, because it is less toxic to the T cells, could enable a different mechanism for altering the way they recognize cancer, and could have fewer side effects for patients.

The technique involves ferrying messenger RNA (mRNA) across the T cell’s membrane via a lipid-based nanoparticle, rather than using a modified HIV virus to rewrite the cell’s DNA. Using the former approach would be preferable, as it only confers a temporary change to the patient’s immune system, but the current standard method for getting mRNA past the cell membrane can be too toxic to use on the limited number of T cells that can be extracted from a patient.

Michael Mitchell, Margaret Billingsley, and Carl June

The researchers demonstrated their technique in a study published in the journal Nano Letters. It was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation of bioengineering in the School of Engineering and Applied Science, and Margaret Billingsley, a graduate student in his lab.

They collaborated with one of the pioneers of CAR T therapy: Carl June, the Richard W. Vague Professor in Immunotherapy and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center and the director of the Parker Institute for Cancer Immunotherapy at the Perelman School of Medicine.

Read more at Penn Engineering blog.

Bioengineering Round-Up (January 2020)

by Sophie Burkholder

University of Washington Researchers Engineer a New Way to Study Circulatory Obstruction

Capillaries are one of the most important forms of vasculature in our body, as they allow our blood to transfer nutrients to other parts of our body. But for how much effect capillary functionality can have on our health, their small size makes them extremely difficult to engineer into models for a variety of diseases. Now, researchers at the University of Washington led by Ying Zheng, Ph. D., engineered a three-dimensional microvessel model with living cells to study the mechanisms of microcirculatory obstruction involved with malaria.

Rather than just achieving a physical model of capillaries, these researchers created a model that allowed them to study typical flow and motion through capillaries, before comparing it to deficiencies in this behavior involved with diseases like malaria. The shape of the engineered model is similar to that of an hourglass, allowing the researchers to study instances where red blood cell transit may encounter bottlenecks between the capillaries and other vessels. Using multiphoton technology, Zheng and her team created 100mm capillary models with etched-in channels and a collagen base, to closely model the typical size and rigidity of the vessels. Tested with malaria-infected blood cells, the model showed similar circulatory obstructive behavior to that which occurs in patients, giving hope that this model can be transferred to other diseases involving such obstruction, like sickle cell anemia, diabetes, and cardiovascular conditions.

Understanding a Cell Membrane Protein Could Be the Key to New Cancer Treatments

Almost every cell in the body has integrins, a form of proteins, on its membrane, allowing cells to sense biological information from beyond their membranes while also using this feedback information to initiate signals within cells themselves. Bioengineers at the Imperial College of London recently looked at the way another membrane protein, called syndecan-4, interacts with integrins as a potential form of future cancer treatment. Referred to as “cellular hands” by lead researcher of the study Armando del Rio Hernandez, Ph.D., syndecan-4 sometimes controls the  development of diseases or conditions like cancer and fibrosis. Hernandez and his team specifically studied the ties of syndecan-4 to yes-associated protein (YAP) and enzyme called P13K, both of which are affiliated with qualities of cancer progression like halted apoptosis or cell stiffening. Knowing this, Hernandez and his team hope to continue research into understanding the mechanisms of syndecan-4 throughout the cell, in search of new mechanisms and targets to focus on with future developments of cancer treatments.

A New Medical Device Could Improve Nerve Functionality After Severe Damage

Serious nerve damage remains difficult to repair surgically, often involving the stretching of nerves for localized damage, or the transfer of healthy nerve cells from another part of the body to fill larger gaps in nerve damage. But these imperfect solutions limit the return of full nerve function and movement to the damaged part of the body, and in more serious cases with large areas of nerve damage, can also risk damage in other areas of the body that healthy nerves are borrowed from for treatment. A new study from the University of Pittsburgh published in Science Translational Medicine led by Kacey Marra, Ph. D., has successfully repaired nerve damage in mice and monkeys using a biodegradable tube that releases growth factors called glial-cell-derived neurotrophic factors over time.

Marra and her team showed that this new device restored nerve function up to 80% in nonhuman primates, where current methods of nerve replacement often only achieve 50-60% functionality restoration. The device might have an easier time getting FDA-approval, since it doesn’t involve the use of stem cells in its repair mechanisms. Hoping to start human clinical trials in 2021, Marra and her team hope that the device will help both injured veterans and typical patients with nerve damage, and see potential future applications in facial nerve damage as well.

A New Computational Model Could Improve Treatments for Cancer, HIV, and Autoimmune Diseases

With cancer, HIV, and other autoimmune diseases, the best treatment options for patients are often determined with trial-and-error methods, leading to prolonged instances of ineffective approaches and sometimes unnecessary side effects. A group of researchers led by Wesley Errington, Ph.D., at the University of Minnesota decided to take a computational approach this problem, in an effort to more quickly and efficiently determine the most appropriate treatment for a given patient. Based on parameters controlling interactions between molecules with multiple binding sites, the team’s new model looks primarily at binding strength, linkage rigidity, and size of linkage arrays. Because diseases can often involve issues in molecular binding, the model aimed to model the 78 unique binding configurations for cases of when interacting molecules only have three binding sites, which are often difficult to observe experimentally. This new approach will allow for faster and easier determination of treatments for patients with diseases involving these molecular interactions.

Improved Drug Screening for Glioblastoma Patients

A new microfluidic brain chip from researchers at the University of Houston could help improve treatment evaluations for brain tumors. Glioblastoma patients, who have a five-year survival rate of a little over 5%, are some of the most common patients suffering from malignant brain tumors. This new chip, developed by the lab of Yasemin Akay, Ph.D., can quickly determine cancer drug effectiveness by analyzing a piece of cultured tumor biopsy from a patient by incorporating different chemotherapy treatments through the microfluidic vessels. Overall, Akay and her team found that this new chip holds hope as a future efficient and inexpensive form of drug screening for glioblastoma patients.

People and Places

The brain constructs maps to guide people, not just of physical spaces but also to connect stimuli around them, like conversations and other people. It’s long been known that the brain area responsible for this spatial navigation—the medial temporal lobe—is also involved in recalling memories.

Michael Kahana (left) is principal investigator in the Defense Advanced Research Projects Agency’s RAM program and a professor in the Department of Psychology. Ethan Solomon is an M.D./Ph.D. student in the Department of Bioengineering of the School of Engineering and Applied Science and in the Perelman School of Medicine.

Now, neuroscientists at the University of Pennsylvania have discovered that the signals the brain produces during spatial navigation and episodic memory recall look similar. Low-frequency brain waves called the theta rhythm appear as people jump from one memory to the next, as many prior studies looking only at human navigation have shown. The new findings, which suggest that the brain structures responsible for helping people navigate the world may also “navigate” a mental map of prior experiences, appear in the Proceedings of the National Academy of Sciences.

Read the rest of this story featuring Penn Bioengineering’s Graduate Group member Michael Kahana and M.D./Ph.D. student Ethan Solomon on Penn Today.

The Florida Institute of Technology recently announced plans to start construction in spring 2020 on a new Health Sciences Research Center, set to further establish biomedical engineering and pre-medical coursework and research at the institute. With plans to open the new center in 2022, Florida Tech anticipates increased enrollment in the two programs, and hopes that the center will offer more opportunities in a growing professional field.

Anson Ong, Ph.D., the Associate Dean of Administration and Graduate Programs at the University of Texas at San Antonio, was recently elected to the International College of Fellows of Biomaterials Science and Engineering. With a focus on research in biomaterial implants for orthopaedic applications, Ong’s election to the college honors his advancement and contribution to the field of biomaterials research.

Penn Bioengineers Help Unlock Secrets of Cell Nuclei after Mitosis

By Izzy Lopez

A collaborative study conducted by researchers at the Children’s Hospital of Philadelphia (CHOP), Penn Engineering and Pennsylvania State University has uncovered new information about how chromosomal material in cell nuclei reorganizes itself after cell division.

While a deep understanding of the cell cycle is a cornerstone of biology and health sciences, research into the complex relationship between three-dimensional chromatin structure and gene transcription is still in its infancy. The results of this study will contribute to a more robust understanding of chromatin rebuilding after mitosis and potentially aid in the treatment of genetic diseases.

Jennifer E. Phillips-Cremins, Ph.D.

Jennifer E. Phillips-Cremins, Assistant Professor in the Department of Bioengineering, contributed to the study alongside Gerd A. Blobel, Frank E. Weise III Endowed Chair in Pediatric Hematology at CHOP and Ross C. Hardison, an expert in gene regulation at Penn State.

Phillips-Cremins’ research uses genetic engineering approaches to discover the mechanisms regulating chromatin organizing principles in cells, as well as computational approaches to investigate cellular function. Her lab’s techniques provide ways of mapping the three-dimensional organization of genes while they are folded together in the genome and how those spatial relationships impact gene expression.

The research team performed their experiments in blood-forming cells from a well-established mouse model. They used sophisticated techniques called high throughput chromosome conformation capture (Hi-C) that detect and map interactions across three-dimensional space between specific sites in chromosomal DNA. These maps also allowed the scientists to measure such interactions at different time points in the cell cycle. In all, the tools detected roughly 2 billion interactions during mitosis and thereafter, when the daughter nuclei are rebuilt.

Members of the Cremins Lab, Daniel J. Emerson, Thomas G. Gilgenast and Katelyn R. Titus, also contributed to the study, which was published in Nature.

Read more about this study in CHOP News.

Bioengineering Round-Up (December 2019)

by Sophie Burkholder

Positive results in first-in-U.S. trial of CRISPR-edited immune cells

3D render of the CRISPR-Cas9 genome editing system

Genetically editing a cancer patient’s immune cells using CRISPR/Cas9 technology, then infusing those cells back into the patient appears safe and feasible based on early data from the first-ever clinical trial to test the approach in humans in the United States. Researchers from the Abramson Cancer Center have infused three participants in the trial thus far—two with multiple myeloma and one with sarcoma—and have observed the edited T cells expand and bind to their tumor target with no serious side effects related to the investigational approach. Penn is conducting the ongoing study in cooperation with the Parker Institute for Cancer Immunotherapy and Tmunity Therapeutics.

“This trial is primarily concerned with three questions: Can we edit T cells in this specific way? Are the resulting T cells functional? And are these cells safe to infuse into a patient? This early data suggests that the answer to all three questions may be yes,” says the study’s principal investigator Edward A. Stadtmauer, section chief of Hematologic Malignancies at Penn. Stadtmauer will present the findings next month at the 61st American Society of Hematology Annual Meeting and Exposition.

Read the rest of the story on Penn Today.

Tulane researchers join NIH HEAL initiative for research into opioid crisis

A Tulane University professor and researcher of biomedical engineering will join fellow researchers from over 40 other institutions in the National Institute of Health’s Help to End Addiction Long-Term (HEAL) Initiative. Of the $945 million that make up the project, Michael J. Moore, Ph.D. will receive a share of $1.2 million to advance research in modeling human pain through computer chips, with the help of fellow Tulane researchers Jeffrey Tasker, Ph.D., and James Zadina, Ph.D., each with backgrounds in neuroscience.

Because of the opioid epidemic sweeping the nation, Moore notes that there’s a rapid search going on to develop non-addictive painkiller options. However, he also sees a gap in adequate models to test those new drugs before human clinical trials are allowed to take place. Here is where he hopes to step in and bring some innovation to the field, by integrating living human cells into a computer chip for modeling pain mechanisms. Through his research, Moore wants to better understand not only how some drugs can induce pain, but also how patients can grow tolerant to some drugs over time. If successful, Moore’s work will lead to a more rapid and less expensive screening option for experimental drug advancements.

New machine learning-assisted microscope yields improved diagnostics

Researchers at Duke University recently developed a microscope that uses machine learning to adapt its lighting angles, colors, and patterns for diagnostic tests as needed. Most microscopes have lighting tailored to human vision, with an equal distribution of light that’s optimized for human eyes. But by prioritizing the computer’s vision in this new microscope, researchers enable it to see aspects of samples that humans simply can’t, allowing for a more accurate and efficient diagnostic approach.

Led by Roarke W. Horstmeyer, Ph.D., the computer-assisted microscope will diffuse light through a bowl-shaped source, allowing for a much wider range of illumination angles than traditional microscopes. With the help of convolutional neural networks — a special kind of machine learning algorithm — Horstmeyer and his team were able to tailor the microscope to accurately diagnose malaria in red blood cell samples. Where human physicians typically perform similar diagnostics with a rate of 75 percent accuracy, this new microscope can do the same work with 90 percent accuracy, making the diagnostic process for many diseases much more efficient.

Case Western Reserve University researchers create first-ever holographic map of brain

A Case Western Reserve University team of researchers recently spearheaded a project in creating an interactive holographic mapping system of the human brain. The design, which is believed to be the first of its kind, involves the use of the Microsoft HoloLens mixed reality platform. Lead researcher Cameron McIntyre, Ph.D., sees this mapping system as a better way of creating holographic navigational routes for deep brain stimulation. Recent beta tests with the map by clinicians give McIntyre hope that the holographic representation will help them better understand some of the uncertainties behind targeted brain surgeries.

More than merely providing a useful tool, McIntyre’s project also brings together decades’ worth of neurological data that has not yet been seriously studied together in one system. The three-dimensional atlas, called “HoloDBS” by his lab, provides a way of finally seeing the way all of existing neuro-anatomical data relates to each other, allowing clinicians who use the tool to better understand the brain on both an analytical and visual basis.

Implantable cancer traps reduce biopsy incidence and improve diagnostic

Biopsies are one of the most common procedures used for cancer diagnostics, involving a painful and invasive surgery. Researchers at the University of Michigan are trying to change that. Lonnie Shea, Ph.D., a professor of biomedical engineering at the university, worked with his lab to develop implants with the ability to attract any cancer cells within the body. The implant can be inserted through a scaffold placed under the patient’s skin, making it a more ideal option than biopsy for inaccessible organs like lungs.

The lab’s latest work on the project, published in Cancer Research, details its ability to capture metastatic breast cancer cells in vivo. Instead of needing to take biopsies from areas deeper within the body, the implant allows for a much simpler surgical procedure, as biopsies can be taken from the implant itself. Beyond its initial diagnostic advantages, the implant also has the ability to attract immune cells with tumor cells. By studying both types of cells, the implant can give information about the current state of cancer in a patient’s body and about how it might progress. Finally, by attracting tumor and immune cells, the implant has the ability to draw them away from the area of concern, acting in some ways as a treatment for cancer itself.

People and Places

Cesar de la Fuente-Nunez, PhD

The Philadelphia Inquirer recently published an article detailing the research of Penn’s Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering, Cesar de la Fuente, Ph.D. In response to a growing level of worldwide deaths due to antibiotic-resistant bacteria, de la Fuente and his lab use synthetic biology, computation, and artificial intelligence to test hundreds of millions of variations in bacteria-killing proteins in the same experiment. Through his research, de la Fuente opens the door to new ways of finding and testing future antibiotics that might be the only viable options in a world with an increasing level of drug-resistant bacteria

Emily Eastburn, a Ph.D. candidate in Bioengineering at Penn and a member of the Boerckel lab of the McKay Orthopaedic Research Laboratory, recently won the Ashton fellowship. The Ashton fellowship is an award for postdoctoral students in any field of engineering that are under the age of 25, third-generation American citizens, and residents of either Pennsylvania or New Jersey. A new member of the Boerckel lab, having joined earlier this fall, Eastburn will have the opportunity to conduct research throughout her Ph.D. program in the developmental mechanobiology and regeneration that the Boerckel lab focuses on.

Cesar de la Fuente ‘Trends in Immunology’ Literature Review

by Sophie Burkholder

 

Cesar de la Fuente, PhD

Cesar de la Fuente, Ph.D., a Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering at Penn, recently published a literature review in Trends in Immunology entitled, “Emerging Frontiers in Microbiome Engineering.” The microbiome, in simple terms, consists of the genetic material of microorganisms in the gut, including bacteria, fungi, protozoa,  viruses, and oral, vaginal, and skin microbiomes. Each human has a unique microbiome that depends both on predetermined factors like exposure to microorganisms within a mother’s birth canal or breastmilk in early life as well as environmental factors and diet in later life. The health of someone’s microbiome is extremely important, as an unhealthy microbiome with an imbalance of symbiotic and pathogenic microbes can make a person more susceptible to various diseases. The most common diseases or disorders associated with a problematic microbiome are rather far-reaching, including some of the most afflicting diseases of today like inflammatory bowel disease, diabetes, obesity, cardiovascular diseases, and neurological disorders.

In his recent literature review, de la Fuente provides an overview of microbiome engineering, and what the future might hold for the field. He defines microbiome engineering initially as a way of studying the “contribution of individual microbes and generating potential therapies against metabolic, inflammatory, and immunological diseases.” Currently, most treatments for issues with the microbiome are broad solutions like dietary adjustments to include more probiotics, antibiotics, or prebiotics, while more serious cases may require a fecal microbiota transplant. While these therapies may work for some patients, de la Fuente emphasizes the need for greater specificity in treatment targets and a need for precision in reprogramming existing microbial communities as an alternative to transplants.

De la Fuente highlights the current methods and tools in microbiome engineering such as the use of bacteriocins and bacteriophages to knock out specific bacteria within the microbiome. However, there are very few bacteriocins or bacteriophages commercially available on today’s market. Another common approach to microbiome engineering is in synthetic biology, or the use of “chassis” — a type of cell that maintains DNA constructs for different functions — to engineering interactions within the microbiome. De la Fuente continues his discussion of current methods by naming and describing several specific examples of these approaches, particularly in relation to synthetic biology options before moving on to examine future directions for these methods.

Before bringing up potential new frontiers for microbiome engineering, de la Fuente also outlines the way that microbiome engineering works in the first place, and dedicates sections of the review to the microbiome’s influence on its host’s immune system and how to engineer the microbiome to modulate that immune system. The main future methods for microbiome engineering that de la Fuente points out in his review include more precise regulation of gene expression through commensal organisms and the use of CRISPRi to find genes involved in bacterial maintenance. The conclusion of de la Fuente’s review brings up the notion of new personalized medicine or therapy for the microbiome that could come with further advances in the field. However, he also makes sure to bring up some still-outstanding questions about the human microbiome that require further research, most notably, what exactly makes a healthy human microbiome? Here’s hoping the research de la Fuente mentions can illuminate a path to the answer.