Jason Burdick Wins Two Research Awards

Burdick
Jason Burdick, PhD

It was a big week’s for Penn Bioengineering‘s Jason Burdick, PhD. This week Dr. Burdick, who is Professor of Bioengineering, received the George H. Heilmeier Faculty Award for Excellence in Research and the Clemson Award from the Society for Biomaterials. Receiving the Heilmeier Award on Tuesday, April 10, Dr. Burdick presented a lecture entitled “”Engineering Hydrogels for Applications in Drug Delivery and Tissue Repair.” Two days later at the annual meeting of the Society for Biomaterials in Atlanta, he received the Clemson and lectured as well.

The Heilmeier Award is  named for George H. Heilmeier, PhD, an alumnus in electrical engineering from Penn and Princeton and executive at RCA, Texas Instruments, DARPA, and other organizations who died in 2014. Dr. Burdick is the sixth BE faculty member (including secondary faculty) to win the award since its institution in 2002. The Clemson awards are given yearly in three areas: basic research; applied research; and contributions to the literature. Dr. Burdick is the first-ever Clemson recipient from Penn. In addition, his PhD student Leo Wang won the Student Award for Outstanding Research by a PhD candidate.

“I am very honored to receive these two awards,” Dr. Burdick said, “which are really reflections of the great lab members that I have had over my years at Penn, as well as the support of fantastic colleagues and collaborators.”

Future of Technology Is Focus of Teach-in

futureAs new technologies emerge, whether related to health care, artificial intelligence, or other aspects of society, they bring with them new ethical challenges.

The topic of the future of technology was front and center on day three of the Penn Teach-in March 18-22. The series of free public events convened by the faculty senate aims to bring the academic community together with the broader community to engage in wide-ranging discussions on topics of social importance.

Among the offerings on Tuesday were two panels featuring faculty from the School of Engineering and Applied Science. The first, “The Future of Technology: Engineering Human Health,” was moderated by Kathleen Stebe and included Jennifer Phillips-CreminsDavid Issadore, and David Meaney – three faculty members in the Department of Bioengineering.

Continue reading at Penn News Today

Shoddy Science Uncovered in New Research

by Linda Tunesi

shoddy science
Konrad Kording, Ph.D.

Konrad Kording, professor in the Department of Bioengineering, and colleagues have a new technique for identifying fraudulent scientific papers by spotting reused images. Rather than scrap a failed study, for example, a researcher might attempt to pass off images from a different experiment to give the false impression that their own was a success.

Kording, a Penn Integrates Knowledge (PIK) Professor who also has an appointment in the Department of Neuroscience in Penn’s Perelman School of Medicine, and his collaborators developed an algorithm that can compare images across journal articles and detect such replicas, even if the image has been resized, rotated, or cropped.

They describe their technique in a paper recently published on the BioRxiv preprint server.

“Any fraudulent paper damages science,” Kording says. “In biology, many times fraud is detected when someone looks at a few papers and says ‘hey, these images look a little similar.’ We reckoned we could make an algorithm that does the same thing.”

“Science depends on building upon other people’s work,” adds Daniel Acuna, lead author on the paper, and a student in Kording’s lab at Northwestern University at the time the study was conducted. “If you cannot trust other people’s work, the scientific process collapses and, worse, the general public loses trust in us. Some websites were doing this, anonymously, but at a painstakingly slow rate.” Acuna is now an assistant professor in the School of Information Studies at Syracuse University.

While much of Kording’s work focuses on using data science to understand the brain, he is also curious about the process of research itself, or, as he puts it, “the science of science.” One of the Kording lab’s previous projects closely analyzed common methods of neuroscience research, and another turned a mirror on itself, describing how to structure a scientific paper.

Continued at the Penn Engineering Medium blog.

Collaboration in Research by Bioengineering Faculty

Jennifer Phillips-Cremins
Danielle Bassett

In faculty matters, specialization is the name of game. The areas in which individual professors conduct their research and teach are highly specific, with often no overlap between the areas of expertise of people in the same departments. Given the broad range of topics covered by the term, bioengineering is particularly complex in the array of subjects researched by faculty.

Now and then, however, these paths converge. Most recently, Jennifer Phillips-Cremins, Ph.D., Assistant Professor of Bioengineering, and Danielle Bassett, Ph.D., Eduardo D. Glandt Faculty Fellow and Associate Professor of Bioengineering, collaborated on a paper published in Nature Methods. Dr. Cremins’s research has focused on genome folding, an intricate process by which DNA in the nuclei of cells creates loops that result in  specific forms of gene regulation. Dr. Bassett’s area is network science and systems theory. Both professors apply their research in the area of central nervous development.

In the new paper, Drs. Cremins and Bassett, along with members of both their labs and colleagues from the Department of Genetics, developed a a graph theory-based method for detecting genome folding, called 3DNetMod, which outperformed earlier models used for the same purpose. In addition, Dr. Cremins is profiled in the same issue of Nature Methods, where she discusses how her past education and experience have resulted in her career achievements thus far.

Brain Network Control Emerges over Childhood and Adolescence

network control

 

The developing human brain contains a cacophony of electrical and chemical signals from which emerge the powerful adult capacities for decision-making, strategizing, and critical thinking. These signals support the trafficking of information across brain regions, in patterns that share many similarities with traffic patterns in railway and airline transportation systems. Yet while air traffic is guided by airport control towers, and railway routes are guided by signal control rooms, it remains a mystery how the information traffic in the brain is guided and how that guidance changes as kids grow.

In part, this mystery has been complicated by the fact that, unlike transportation systems, the brain is not hooked up to external controllers. Control must happen internally. The problem becomes even more complicated when we think about the sheer number of routes that must exist in the brain to support the full range of human cognitive capabilities. Thus, the controllers would need to produce a large set of control signals or use different control strategies. Where internal controllers might be, how they produce large variations in routing, and whether those controllers and their function change with age are important open questions.

A recent paper published in Nature Communications – a product of collaboration among the Departments of Bioengineering and Electrical & Systems Engineering at the University of Pennsylvania and the Department of Psychiatry of Penn’s Perelman School of Medicine – offers some interesting answers. In their article, Danielle Bassett, Ph.D., Eduardo D. Glandt Faculty Fellow and Associate Professor in the Penn BE Department, Theodore D. Satterthwaite, M.D., Assistant Professor in the Penn Psychiatry Department, postdoctoral fellow Evelyn Tang, and their colleagues suggest that control in the human brain works in a similar way to control in man-made robotic and other mechanical systems. Specifically, controllers exist inside each human brain, each region of the brain can perform multiple types of control, and this control grows as children grow.

As part of this study, the authors applied network control theory — an emerging area of systems engineering – to explain how the pattern of connections (or network) between brain areas directly informs the brain’s control functions. For example, hubs of the brain’s information trafficking system (like Grand Central Station in New York City) show quite different capacities for and sensitivities to control than non-hubs (like Newton Station, Kansas). Applying these ideas to a large set of brain imaging data from 882 youths in the Philadelphia area between the ages of 8 and 22 years old, the authors found that the brain’s predicted capacity for control increases over development. Older youths have a greater predicted capacity to push their brains into nearby mental states, as well as into distant mental states, indicating a greater potential for diversity of mental operations than in younger youths.

The investigators then asked whether the principles of network control could explain the specific manner in which connections in the brain change as youths age. They used tools from evolutionary game theory – traditionally used to study Darwinian competition and evolving populations in biology – to ‘evolve’ brain networks in silico from their 8-year old state to their 22-year-old state. The results demonstrated that the optimization of network control is a principle that explains the observed changes in brain connectivity as youths develop over childhood and adolescence. “One of the observations that I think is particularly striking about this study,” Bassett says, “is that the principles of network controllability are sufficient to explain the observed evolution in development, suggesting that we have identified a quintessential rule of developmental rewiring.”

This research informs many possible future directions in scientific research. “Showing that network control properties evolve during adolescence also suggests that abnormalities of this developmental process could be related to cognitive deficits that are present in many neuropsychiatric disorders,” says Satterthwaite. The discovery that the brain optimizes certain network control functions over time could have important implications for better understanding of neuroplasticity, skill acquisition, and developmental psychopathology.

CIFAR Names Kording Associate Fellow

CIFAR
Konrad Kording, Ph.D.

Dr. Konrad Kording, a University of Pennsylvania PIK Professor in Bioengineering and Neuroscience, has been named an associate fellow by the Canadian Institute for Advanced Research (CIFAR), an advanced study institute headquartered in Toronto and partially funded by the government of Canada. Dr. Kording’s fellowship is in the institute’s Learning in Machines & Brains area, which has been one of CIFAR’s 14 interdisciplinary study fields since 2004. He joins 32 other fellows currently supported by the institute for their work in this area.

“The CIFAR program in Learning in Machines & Brains brings together many of the world’s leading deep learning scientists,” Dr. Kording says. “I look forward to collaborate with them to figure out how the brain learns.”

CIFAR was founded in 1982. Over the last 35 years, the institute has supported the work of scientists in 133 countries, including 18 Nobel Prize laureates.

Lagrange Goes to Dani Bassett

Lagrange
Danielle Bassett, Ph.D.

Danielle S. Bassett, Eduardo D. Glandt Faculty Fellow and Associate Professor in the University of Pennsylvania’s Department of Bioengineering, is the recipient of the 2017 Lagrange-CRT Foundation Prize. The prize, given by the Institute for Scientific Interchange Foundation in Turin, Italy, was created to encourage and honor researchers working in the field of complex systems.

Complex systems feature many interconnected parts whose individual behavior influences the outcomes of the whole. Examples include social media networks, ecological webs, stock markets, and in Bassett’s case, the brain. Her research maps and analyzes the networks of neurons that enable all manners of cognitive abilities, as well as how those networks evolve during development or malfunction in disease.

The prize comes with an award of €50,000, or roughly $60,000. It will be formally presented to Bassett at a ceremony in Turin next week. Bassett is the first woman to be the sole recipient of the prize since its inception in 2008. Lada Adamic won it alongside Xavier Gabaix in 2012.

Read more at the SEAS blog on Medium.

Chairs for BMES ’19 to Include Burdick

chairsJason Burdick, Ph.D., who is a professor in the University of Pennsylvania’s Department of Bioengineering, has been named one of the three chairs of the 2019 annual meeting of the Biomedical Engineering Society (BMES), which be held here in Philadelphia on October 16-19. Dr. Burdick will share this position with two other Philadelphians: Alisa Morss Clyne, Ph.D., an associate professor of mechanical engineering and mechanics at Drexel University; and Ruth Ochia, Ph.D., an associate professor of instruction in bioengineering at Temple University. Drs. Burdick, Clyne, and Ochia will share the responsibility for planning the meeting and chairing it once it is in session.

“I am very happy to be appointed as a program chair for the 2019 BMES meeting in Philadelphia, along with Alisa Morss Clyne of Drexel University and Ruth Ochia of Temple University,” Dr. Burdick said when asked about the honor. “The three of us felt that it was important to represent the various biomedical engineering research and education programs within the city of Philadelphia, since the meeting will be held here.  There is such a wealth of biomedical engineering efforts in Philly that provides great opportunities to engage in outreach and interaction with both the community and local industry during the meeting.”

New Faculty: Interview With Joel Boerckel

Boerckel
Joel Boerckel, Ph.D.

Continuing with our series of interviews with new faculty members, we feature this interview with Dr. Joel Boerckel, who has a dual appointment in the Department of Bioengineering at Penn and the Perelman School of Medicine’s Department of Orthopaedic Surgery.  Dr. Boerckel’s research concerns the mechanobiology of development and regeneration. Here, he speaks with Andrew Mathis about his career to this point and where he sees the fields of tissue engineering and regenerative medicine heading over the future. Enjoy!

Phillips-Cremins Research Identifies Protein Involved in Brain Development

Phillips-Cremins
Jennifer Phillips-Cremins, Ph.D.

The vast majority of genetic mutations that are associated with disease occur at sites in the genome that aren’t genes. These sequences of DNA don’t code for proteins themselves, but provide an additional layer of instructions that determine if and when particular genes are expressed. Researchers are only beginning to understand how the non-coding regions of the genome influence gene expression and might be disrupted in disease.

​​​​​​​​​​​​Jennifer Phillips-Cremins, assistant professor in the Department of Bioengineering in the University of Pennsylvania’s School of Engineering and Applied Science, studies the three-dimensional folding of the genome and the role it plays in brain development. When a stretch of DNA folds, it creates a higher-order structure called a looping interaction, or “loop.” In doing so, it brings non-coding sites into physical contact with their target genes, precisely regulating gene expression in space and time during development.

Phillips-Cremins and lab member Jonathan Beagan have led a new study identifying a new protein that connects loops in embryonic stem cells as they begin to differentiate into types of neurons. Though the study was conducted in mice, these findings inform aspects of human brain development, including how the genetic material folds in the 3-D nucleus and is reconfigured as stem cells become specialized. Better understanding of these mechanisms may be relevant to a wide range of neurodevelopmental disorders.

Cremins lab members Michael Duong, Katelyn Titus, Linda Zhou, Zhendong Cao, Jingjing Ma, Caroline Lachanski and Daniel Gillis also contributed to the study, which was published in the journal Genome Research.​​​​​​

Continue reading at the SEAS blog.