Riccardo Gottardi Receives BMES Rising Star Award

Riccardo Gottardi, Ph.D.

Riccardo Gottardi, Assistant Professor in Pediatrics and in Bioengineering and leader of the Bioengineering and Biomaterials Laboratory at the Children’s Hospital of Philadelphia (CHOP), received the Rising Star Award from the Biomedical Engineering Society-Cellular and Molecular Bioengineering (BMES-CMBE). The Rising Star Award recognizes a BMES-CMBE member who is at the early independent career stage and has made an outstanding impact on the field of cellular and molecular bioengineering. Awardees will give an oral presentation on their research at the BMES-CMBE conference in Puerto Rico in January and be recognized at the conference Gala dinner.

Dr. Gottardi’s research focuses on engineering solutions for pediatric health, primarily for airway disorders. He has previously received awards for work to create a biomaterial patch to repair the tympanic membrane and for work to develop cartilage implants to treat severe subglottic stenosis. He received grant support from the National Institutes of Health to further his work in subglottic stenosis.

This story originally appeared in the CHOP Cornerstone Blog.

Penn and CHOP Researchers Show Gene Editing Tools Can be Delivered to Perinatal Brain

Genetic diseases that involve the central nervous system (CNS) often impact children before birth, meaning that once a child is born, irreversible damage has already been done. Given that many of these conditions result from a mutation in a single gene, there has been growing interest in using gene editing tools to correct these mutations before birth.

However, identifying the appropriate vehicle to deliver these gene editing tools to the CNS and brain has been a challenge. Viral vectors used to deliver gene therapies have some potential drawbacks, including pre-existing viral immunity and vector-related adverse events, and other options like lipid nanoparticles (LNPs) have not been investigated extensively in the perinatal brain.

Now, researchers in the Center for Fetal Research at Children’s Hospital of Philadelphia (CHOP) and Penn Engineering have identified an ionizable LNP that can deliver mRNA base editing tools to the brain and have shown it can mitigate CNS disease in perinatal mouse models. The findings, published in ACS Nano, open the door to mRNA therapies that could be delivered pre- or postnatally to treat genetic CNS diseases.

The research team began by screening a library of ionizable LNPs – microscopic fat bubbles that have a positive charge at low pH but neutral charge at physiological conditions in the body. After identifying which LNPs were best able to penetrate the blood-brain barrier in fetal and newborn mice, they optimized their top-performing LNP to be able to deliver base editing tools. The LNPs were then used to deliver mRNA for an adenine base editor, which would correct a disease-causing mutation in the lysosomal storage disease, MPSI, by changing the errant adenine to guanine.

The researchers showed that their LNP was able to improve the symptoms of the lysosomal storage disease in the neonatal mouse brain, as well as deliver mRNA base editing tools to the brain of other animal models. They also showed the LNP was stable in human cerebrospinal fluid and could deliver mRNA base editing tools to patient-derived brain tissue.

“This proof-of-concept study – co-led by Rohan Palanki, an MD/PhD student in my lab, and Michael Mitchell’s lab at Penn Bioengineering – supports the safety and efficacy of LNPs for the delivery of mRNA-based therapies to the central nervous system,” said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of General, Thoracic and Fetal Surgery at CHOP and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery. “Taken together, these experiments provide the foundation for additional translational studies and demonstrate base editing facilitated by a nonviral delivery carrier in the NHP fetal brain and primary human brain tissue.”

This story was written by Dana Bate. It originally appeared on CHOP’s website.

Riccardo Gottardi Recognized for Airway Research

Matthew Aronson (left), Ph.D. student in Bioengineering, and Riccardo Gottardi, Assistant Proessor in Bioengineering and Pediatrics.

Riccardo Gottardi, Assistant Professor in Pediatrics in the Perelman School of Medicine and in Bioengineering in the School of Engineering and Applied Science, has been named a “Young Innovator of Cellular and Molecular Bioengineering” by Cellular and Molecular Bioengineering, the official journal of the Biomedical Engineering Society (BMES). Gottardi is Chief Scientist in the Pediatric Airway Frontier Program at the Children’s Hospital of Philadelphia (CHOP). He leads the Bioengineering and Biomaterials (Bio2) Lab, and was recognized here for his research to prevent subglottic stenosis in children.

Gottardi’s work in subglottic stensosis, a severe narrowing of the airway in response to intubation, was recently profiled in CHOP’s Cornerstone Blog. CHOP’s award press release describes Gottardi’s innovative treatment:

“Prior studies by Dr. Gottardi’s lab used in vitro models to demonstrate that incorporating AMPs into polymer-coated tubes can inhibit bacterial growth and modulate the upper-airway microbiome. In a recent study in Cellular and Molecular Engineering, led by [Bioengineering] PhD student Matthew Aronson of the Gottardi Lab, the researchers went a step further and used both ex vivo and in vivo models to show how their patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively targeted the local airway microbiota, reducing inflammation and resolving stenosis.

‘I am honored to be recognized by Cellular and Molecular Engineering for this exciting and notable award,” Dr. Gottardi said. “We are hopeful that our airway innovation will show similar success in human trials, so that we can improve outcomes for intubated pediatric patients.’”

Read CHOP’s full announcement of the award here.

Penn Bioengineers Create Non-invasive Cartilage Implants for Pediatric Subglottic Stenosis

by Emily Shafer

Paul Gehret and Riccardo Gottardi accept the International Society for Biofabrication New Investigator Award onstage at the international conference.
Paul Gehret (left) and Riccardo Gottardi, PhD, at Biofabrication 2022, the International Conference on Biofabrication.

Bioengineering researchers at Children’s Hospital of Philadelphia are developing a less invasive and quicker method to create cartilage implants as an alternative to the current treatment for severe subglottic stenosis, which occurs in 10 percent of premature infants in the U.S.

Subglottic stenosis is a narrowing of the airway, in response to intubation. Severe cases require laryngotracheal reconstruction that involves grafting cartilage from the rib cage with an invasive surgery. With grant support from the National Institutes of Health, Riccardo Gottardi, PhD, who leads the Bioengineering and Biomaterials (Bio2) Lab at CHOP, is refining a technology called Meniscal Decellularized scaffold (MEND). Working with a porcine model meniscus, the researchers remove blood vessels and elastin fibers to create pathways that allow for recellularization. Dr. Gottardi and his team then harvest ear cartilage progenitor cells (CPCs) with a minimally invasive biopsy, combine them with MEND, and create cartilage implants that could be a substitute for the standard laryngotracheal reconstruction.

This work and similar work on the tympanic membrane earned Paul Gehret, a doctoral student in the Gottardi Lab, the International Society for Biofabrication New Investigator Award and the Wake Forest Institute for Regenerative Medicine Young Investigator Award.  Gehret and Dr. Gottardi accepted the awards at Biofabrication 2022, the International Conference on Biofabrication, in Pisa Italy.

While laryngotracheal reconstruction in the adult population has a success rate of up to 96%, success rates in children range from 75% to 85%, and children often require revision surgery due to a high incidence of restenosis. The procedure also involves major surgery to remove cartilage from the rib cage, which is more difficult for childrens’ smaller bodies.

“Luckily not many children suffer from severe subglottic stenosis, but for those who do, it is really serious,” said Dr. Gottardi, who also is assistant professor in the Department of Pediatrics and Department of Bioengineering at CHOP and the University of Pennsylvania. “With our procedure, we have an easily accessible source for the cartilage and the cells, providing a straightforward and noninvasive treatment option with much potential.”

Read the full story in CHOP’s Cornerstone Blog.

Riccardo Gottardi is an Assistant Professor in the Department of Pediatrics, Division of Pulmonary Medicine in the Perelman School of Medicine and in the Department of Bioengineering in the School of Engineering and Applied Science. He also holds an appointment in the Children’s Hospital of Philadelphia (CHOP).

Paul Gehret is a Ph.D. student in Bioengineering, an Ashton Fellow and a NSF Fellow. His research focuses on leveraging decellularized cartilage scaffolds and novel cell sources to reconstruct the pediatric airway.

More 2023 SFB STAR Awards for Penn Bioengineering Students

Following up on our recent announcement of two Student Travel Achievement Recognition (STAR) Awards from the Society for Biomaterials (SFB) for members of the lab of Mike Mitchell, we are pleased to announce that two more Penn Bioengineering students also received STAR Awards!

Matthew Aronson and Alexandra Dumas are both members of the lab of Riccardo Gottardi, Assistant Professor in Pediatrics in the Perelman School of Medicine and in Bioengineering in the School of Engineering and Applied Science. Both presented their work at the recent 2023 SFB Annual Meeting and Exposition in San Diego, California in April 2023 and were honored with STAR Awards for their research.

The Gottardi Bioengineering and Biomaterials Laboratory studies treatment and function restoration for children with otolaryngologic disorders through the Children’s Hospital of Philadelphia  (CHOP) in the Division of Otolaryngology.

Matthew Aronson

Matthew Aronson is a third-year Ph.D. student in Bioengineering, an Ashton Fellow, and a NSF Fellow. His doctoral research focuses on studying pediatric airway diseases and disorders. More specifically, he is interested in how bacteria of the upper airway are responsible for the development and progression the disease subglottic stenosis, narrowing of the airway. In addition to understanding this devastating disease in the context of pediatric patients at CHOP, he also designed a novel drug-eluting endotracheal tube to deliver a selective antimicrobial peptide to function as a treatment modality for the prevention of the disease.

Alexandra Dumas

Alexandra Dumas is a rising fourth-year undergraduate in Bioengineering from Durban, South Africa. She is a PURM Fellow and a University Scholar. Her recent work in the Gottardi Lab focuses on using decellularized cartilage scaffolds to repair the meniscus and airway. After her undergraduate degree, she hopes to pursue a Ph.D. or M.D.-Ph.D. in bioengineering to pursue the design of new biomaterials for low-resource communities.

 

Read more stories featuring Gottardi and his team here.

2023 Senior Design Project Competition Winners Announced

Each year, Penn Engineering’s seniors present their Senior Design projects, a year-long effort that challenges them to test and develop solutions to real-world problems, to their individual departments. The top three projects from each department go on to compete in the annual Senior Design Competition, sponsored by the Engineering Alumni Society, which involves pitching projects to a panel of judges who evaluate their potential in the market.

We are proud that two of the four awards went to Penn Bioengineering teams!

This year’s panel included over forty judges, and each winning team received a $2,000 prize, generously sponsored by Penn Engineering alumnus Kerry Wisnosky.

Congratulations to all of the 2023 participants and winners!

Technology & Innovation Award

This award recognized the team whose project represents the highest and best use of technology and innovation to leverage engineering principles.

Team BAMBI poses with Dean Vijay Kumar.

Winner: Team BAMBI
Department: Bioengineering
Team Members: Ria Dawar, Pallavi Jonnalagadda, Jessica Ling, Grace Qian
Mentor: Erin Anderson
Instructors: Erin Berlew, Sevile Mannickarottu, and David Meaney
Abstract: BAMBI (Biointelligent Apnea Monitor for Bradycardia-Prone Infants) is a tripartite system that leverages machine learning and automated mechanical stimulation to detect and treat apnea of prematurity in the NICU.

Judges’ Choice Award

Team StablEyes poses with Dean Vijay Kumar.This award recognizes the group whose all-around presentation captures the best of the senior design program’s different facets:  ideation, scope of project, team problem-solving, execution and presentation.

Winner: Team StablEyes
Department: Bioengineering
Team Members: Ella Atsavapranee, Jake Becker, Ruoming Fan, Savan Patel
Mentor: Erin Anderson, Dr. Drew Scoles and Dr. Tomas Aleman (Children’s Hospital of Philadelphia, Penn Medicine)
Instructors: Erin Berlew, Sevile Mannickarottu, and David Meaney
Abstract: StablEyes consists of a stabilization mount that provides fine, motorized control of the handheld OCT to improve ease of use for physicians and machine learning-based software to aid in diagnosis from retinal images.

Read the full list of SEAS Senior Design Competition Award winners in Penn Engineering Today.

Read more about all the Class of 2023 Penn Bioengineering Senior Design Teams in the Penn BE Labs website.

Senior Design Team “StablEyes” Uses 3D Printing to Simplify Retinal Imaging

A team of Penn Bioengineering Senior Design students was featured as the 3D print of the week by the Penn Biomedical Library’s Biomeditations blog.

The StablEyes team. From left to right, Jake Becker (BE ’23), Ruoming Fan (BE ’23), Ella Atsavapranee (BE ’23), and Savan Patel (M&T ’23).

Fourth-year undergraduate students Ella Atsavapranee, Jake Becker, Ruoming Fan, and Savan Patel created StablEyes, “a stabilization mount that provides fine, motorized control of the handheld OCT to improve ease of use for physicians and machine learning-based software to aid in diagnosis from retinal images.” The team made use of 3D printing services, laboratory space, and expertise across Penn’s campus to create their innovative design, including the Bollinger Digital Fabrication Lab in the Holman Biotech Commons, the Fisher Fine Arts Library, the Children’s Hospital of Philadelphia (CHOP), and the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka the Penn BE Labs).

Read “Featured 3D Print: Simplifying Retinal Imaging with StablEyes” by Lexi Voss in Biomeditations.

Penn Bioengineering Student Angela Song Named Goldwater Scholar

by Amanda MottLouisa Shepard

Four University of Pennsylvania undergraduates have received 2023 Goldwater Scholarships, awarded to second- or third-year students planning research careers in mathematics, the natural sciences, or engineering.

They are among the 413 students named 2023 Goldwater Scholars from more than 5,000 students nominated by 427 academic institutions in the United States, according to the Barry Goldwater Scholarship & Excellence in Education Foundation. Each scholarship provides as much as $7,500 each year for as many as two years of undergraduate study.

Penn has produced 59 Goldwater Scholars since Congress established the scholarship in 1986 to honor U.S. Senator Barry Goldwater.

Angela Song
Angela Song (Class of 2024)

Angela Song, from Princeton Junction, New Jersey, is a third-year majoring in bioengineering in the School of Engineering and Applied Science. She is interested in engineering molecular therapeutics for disease. She works in Douglas C. Wallace’s lab in the Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, focusing on designing engineered proteins with mitochondrial applications. At Penn, Song is the vice president of design for UnEarthed, a student-published educational magazine for West Philadelphia elementary school children, and president of the Penn American Red Cross Club. After graduating, Song plans to continue pursuing research through a Ph.D. in bioengineering.

Read the full list of Penn 2023 Goldwater Scholars in Penn Today.

Read about previous Penn Bioengineering Goldwater Scholars here.

Carl June and Avery Posey Lead the Way in CAR T Cell Therapy

Perelman School of Medicine (PSOM) professors and Penn Bioengineering Graduate Group members Carl June and Avery Posey are leading the charge in T cell therapy and the fight against cancer.

Avery Posey, PhD

Carl June, MD

Advances in genome editing through processes such as CRISPR, and the ability to rewire cells through synthetic biology, have led to increasingly elaborate approaches for modifying and supercharging T cells for therapy. Avery Posey,  Assistant Professor of Pharmacology, and Carl June, the Richard W. Vague Professor in Immunotherapy, explain how new techniques are providing tools to counter some of the limitations of current CAR T cell therapies in a recent Nature feature.

The pair were also part of a team of researchers from PSOM, the Children’s Hospital of Philadelphia (CHOP), and the Corporal Michael J. Crescenz VA Medical Center to receive an inaugural $8 million Therapy ACceleration To Intercept CAncer Lethality (TACTICAL) Award from the Prostate Cancer Foundation. Their project will develop new clinic-ready CAR T cell therapies for Metastatic Castrate-Resistant Prostate Cancer (mCRPC).

Read “The race to supercharge cancer-fighting T cells” in Nature.

Read about the TACTICAL Award in the December 2022 Awards & Accolades section of Penn Medicine News.

OCTOPUS, an Optimized Device for Growing Mini-Organs in a Dish

by Devorah Fischler

With OCTOPUS, Dan Huh’s team has significantly advanced the frontiers of organoid research, providing a platform superior to conventional gel droplets. OCTOPUS splits the soft hydrogel culture material into a tentacled geometry. The thin, radial culture chambers sit on a circular disk the size of a U.S. quarter, allowing organoids to advance to an unprecedented degree of maturity.

When it comes to human bodies, there is no such thing as typical. Variation is the rule. In recent years, the biological sciences have increased their focus on exploring the poignant lack of norms between individuals, and medical and pharmaceutical researchers are asking questions about translating insights concerning biological variation into more precise and compassionate care.

What if therapies could be tailored to each patient? What would happen if we could predict an individual body’s response to a drug before trial-and-error treatment? Is it possible to understand the way a person’s disease begins and develops so we can know exactly how to cure it?

Dan Huh, Associate Professor in the Department of Bioengineering at the University of Pennsylvania’s School of Engineering and Applied Science, seeks answers to these questions by replicating biological systems outside of the body. These external copies of internal systems promise to boost drug efficacy while providing new levels of knowledge about patient health.

An innovator of organ-on-a-chip technology, or miniature copies of bodily systems stored in plastic devices no larger than a thumb drive, Huh has broadened his attention to engineering mini-organs in a dish using a patient’s own cells.

A recent study published in Nature Methods helmed by Huh introduces OCTOPUS, a device that nurtures organs-in-a-dish to unmatched levels of maturity. The study leaders include Estelle Park, doctoral student in Bioengineering, Tatiana Karakasheva, Associate Director of the Gastrointestinal Epithelium Modeling Program at Children’s Hospital of Philadelphia (CHOP), and Kathryn Hamilton, Assistant Professor of Pediatrics in Penn’s Perelman School of Medicine and Co-Director of the Gastrointestinal Epithelial Modeling Program at CHOP.

Read the full story in Penn Engineering Today.