César de la Fuente Receives 2022 RSEQ Young Investigator Award

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Bioengineering, Microbiology, and in Chemical and Biomolecular Engineering has been honored with a 2022 Young Investigator Award by the Royal Spanish Society of Chemistry (RSEQ) for his pioneering research efforts to combine the power of machines and biology to help prevent, detect, and treat infectious diseases.

Read the RSEQ’s announcement here.

This story originally appeared in Penn Medicine News’s Awards & Accolades post for April 2022.

 

Bioengineering Graduate Jason Andrechak Wins Graduate Leadership Award

Jason Andrechak

Congratulations to recent Penn Bioengineering graduate Jason Andrechak on winning a Graduate Leadership Awards for 2022. Each year a select number of students across the university are recognized for their service and lasting contributions to graduate student life at Penn. Andrechak, one of only ten recipients in 2022, won a Dr. Andy Binns Award for Outstanding Service to Graduate and Professional Student Life. This award is presented to “graduate or professional students, upon their graduation from Penn, who have significantly impacted graduate and professional student life through service involvement in student life initiatives or organizations.” Andrechak won this award for his “service and leadership in advocating for equity and accessibility during the transition to virtual operations and following a period of leadership transition within the Graduate and Professional Student Assembly (GAPSA). ”

Andrechak completed his Ph.D. in Bioengineering in 2022, where he studied macrophage immunotherapy in solid tumors in the lab of Dennis E. Discher, Robert D. Bent Professor in Chemical and Biomolecular Engineering, Bioengineering, and Mechanical Engineering and Applied Mechanics. He was named a National Science Foundation Graduate Research Fellow in 2018. He has actively led the Graduate Association of Bioengineers (GABE) as Community Service & Outreach chair from 2017-2019 and as co-President from 2019-2022. He also served as the Director of Equity & Access for the Graduate & Professional Student Assembly (GAPSA) from 2020-2021, in addition to several other service and advisory roles at the department, school, and university levels.

Learn more about the Penn Graduate Leadership Awards and read the full list of recipients on the Grad Center at Penn website.

Decoding a Material’s ‘Memory’

by Erica K. Brockmeier

A suspension of particles of different sizes during shearing experiments conducted in the lab of Paulo Arratia, with arrows indicating particle “flow” and trajectories. In a new study published in Nature Physics, researchers detail the relationship between a disordered material’s individual particle arrangement and how it reacts to external stressors. The study also found that these materials have “memory” that can be used to predict how and when they will flow. (Image: Arratia lab)

New research published in Nature Physics details the relationship between a disordered material’s individual particle arrangement and how it reacts to external stressors. The study also found that these materials have “memory” that can be used to predict how and when they will flow. The study was led by Larry Galloway, a Ph.D. student in the lab of Paulo Arratia, and Xiaoguang Ma, a former postdoc in the lab of Arjun Yodh, in collaboration with researchers in the labs of Douglas Jerolmack and Celia Reina.

A disordered material is randomly arranged at the particle-scale, e.g. atoms or grains, instead of being systematically distributed—think of a pile of sand instead of a neatly stacked brick wall. Researchers in the Arratia lab are studying this class of materials as part of Penn’s Materials Research Science & Engineering Center, where one of the program’s focuses is on understanding the organization and proliferation of particle-scale rearrangements in disordered, amorphous materials.

The key question in this study was whether one could observe the structure of a disordered material and have some indication as to how stable it is or when it might begin to break apart. This is known as the yield point, or when the material “flows” and begins to move in response to external forces. “For example, if you look at the grains of a sand castle and how they are arranged, can I tell you whether the wind can blow it over or if it has to be hit hard to fall over?” says Arratia. “We want to know, just by looking at the way the particles are arranged, if we can say anything about the way they’re going to flow or if they are going to flow at all.”

While it has been known that individual particle distribution influences yield point, or flow, in disordered materials, it has been challenging to study this phenomenon since the field lacks ways to “quantify” disorder in such materials. To address this challenge, the researchers collaborated with colleagues from across campus to combine expertise across the fields of experimentation, theory, and simulations.

Read the full story in Penn Today.

The authors are Larry Galloway, Erin Teich, Christoph Kammer, Ian Graham, Celia Reina, Douglas Jerolmack, Arjun Yodh, and Paulo Arratia from Penn; Xiaoguang Ma, previously a postdoc at Penn and now at the Southern University of Science and Technology in Shenzhen, China; and Nathan Keim, previously a postdoc at Penn and now at Pennsylvania State University.

Arjun Yodh is the James M. Skinner Professor of Science in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences and a member of the Penn Bioengineering Graduate Group.

Paulo Arratia is a professor in the departments of Mechanical Engineering and Applied Mechanics and Chemical and Biomolecular Engineering in the School of Engineering and Applied Science at the University of Pennsylvania.

Douglas Jerolmack is a professor in the Department of Earth and Environmental Science in Penn’s School of Arts & Sciences and in the Department of Mechanical Engineering and Applied Mechanics at Penn Engineering.

Celia Reina is the William K. Gemmill Term Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics at Penn Engineering.

BE Seminar: “Tissue-Inspired Synthetic Biomaterials” (Shelly Peyton)

Shelly R. Peyton, Ph.D.

Speaker: Shelly R. Peyton, Ph.D.
Professor, Armstrong Professional Development Professor
Chemical Engineering, Biomedical Engineering Adjunct
College of Engineering
University of Massachusetts Amherst

Date: Thursday, December 9, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
This seminar will be held virtually, but students registered for BE 699 can gather to watch in Moore 216.

Abstract: Improved experimental model systems are critically needed to better understand cancer progression and bridge the gap between lab bench proof-of-concept studies, validation in animal models, and eventual clinical application. Many methods exist to create biomaterials, including hydrogels, which we use to study cells in contexts more akin to what they experience in the human body. Our lab has multiple approaches to create such biomaterials, based on combinations of poly(ethylene glycol) (PEG) with peptides and zwitterions. In this presentation, I will discuss our synthetic approaches to building life-like materials, how we use these systems to grow cells and understand how a cell’s environment, particularly the extracellular matrix regulates cancer cell growth, dormancy, and drug sensitivity.

Shelly Peyton Bio: Shelly Peyton is the Armstrong Professor and Graduate Program Director, and chair of the Diversity, Equity, and Inclusion (DEI) committee of Chemical Engineering at the University of Massachusetts Amherst. She is co-director of the Models 2 Medicine Center in the Institute for Applied Life Sciences. She received her B.S. in Chemical Engineering from Northwestern University in 2002 and went on to obtain her MS and PhD in Chemical Engineering from the University of California, Irvine. She was then an NIH Kirschstein post-doctoral fellow in the Biological Engineering department at MIT before starting her academic appointment at UMass in 2011. Shelly leads an interdisciplinary group of engineers and molecular cell biologists seeking to create and apply novel biomaterials platforms toward new solutions to grand challenges in human health. Her lab’s unique approach is using our engineering expertise to build simplified models of human tissue with synthetic biomaterials. They use these systems to understand 1) the physical relationship between metastatic breast cancer cells and the tissues to which they spread, 2) the role of matrix remodeling in drug resistance, and 3) how to create bioinspired mechanically dynamic and activatable biomaterials. Among other honors for her work, Shelly was a 2013 Pew Biomedical Scholar, received a New Innovator Award from the NIH, and she was awarded a CAREER grant from the NSF. Shelly is co-PI with Jeanne Hardy on the Biotechnology (BTP) NIH T32 program and is a co-PI of the PREP program at UMass, which brings students from URM groups to UMass for a 1-year post-BS study to help prepare them for graduate school.

Yogesh Goyal Selected as 2021 STAT Wunderkind

Yogesh Goyal, Ph.D.

Yogesh Goyal, Ph.D.,  a postdoctoral researcher in Genetics and Bioengineering, has been selected as a 2021 STAT Wunderkind, which honors the “next generation of scientific superstars.” Goyal’s research is centered around developing novel mathematical and experimental frameworks to study how a rare subpopulation of cancer cells are able to survive drug therapy and develop resistance, resulting in relapse in patients. In particular, his work provides a view of different paths that single cancer cells take when becoming resistant, at unprecedented resolution and scale. This research aims to help devise novel therapeutic strategies to combat the challenge of drug resistance in cancer.

Goyal is a Jane Coffin Childs Postdoctoral Fellow in the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn. He will begin an appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University in spring 2022.

Read the announcement in Penn Medicine News.

Penn Bioengineering Alumna Cynthia Reinhart-King is President Elect of BMES

Dr. Cynthia Reinhart-King, Engineering, BME, Photo by Joe Howell

Penn Bioengineering alumna Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was elected the next President of the Biomedical Engineering Society (BMES), the largest professional society for biomedical engineers. Her term as president-elect started at the annual BMES meeting in October 2021.

Reinhart-King graduated with her Ph.D. from Penn Bioengineering in 2006. She studied in the lab of Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and Chemical and Biomolecular Engineering as a Whitaker Fellow and went on to complete postdoctoral training as an Individual NIH NRSA postdoctoral fellow at the University of Rochester. Prior to joining Vanderbilt, she was on the faculty of Cornell University and received tenure in the Department of Biomedical Engineering. The Reinhart-King lab at Vanderbilt “uses tissue engineering, microfabrication, novel biomaterials, model organisms, and tools from cell and molecular biology to study the effects of mechanical and chemical changes in tissues during disease progression.”

Reinhart-King gave the 2019 Grace Hopper Distinguished Lecture, sponsored by the Department of Bioengineering. This lecture series recognizes successful women in engineering and seeks to inspire students to achieve at the highest level. She is a recipient of numerous prestigious awards, including the Rita Schaffer Young Investigator Award in 2010, an NSF CAREER Award, and the Mid-Career Award in 2018 from BMES.

In a Q&A on the BMES Blog, Reinhart-King said that:

“BMES is facing many challenges, like many societies, as we deal with the hurdles associated with COVID-19 and inequities across society. We must continue to address those challenges. However, we are also in a terrific window of having robust membership, many members who are eager to get involved with the society’s activities, and a national lens on science and scientists. One of my goals will be to identify and create opportunities for our members to help build the reach of the society and its member.”

Read “Cynthia Reinhart-King is president-elect of the Biomedical Engineering Society” in Vanderbilt News.

BE Seminar: “Phage and Robotics-Assisted Biomolecular Evolution” (Emma Chory)

Emma Chory, Ph.D.

Speaker: Emma Chory, Ph.D.
Postdoctoral Fellow
Sculpting Evolution Laboratory
Massachusetts Institute of Technology

Date: Thursday, October 21, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu
Room: Moore 216

Abstract: Evolution occurs when selective pressures from the environment shape inherited variation over time. Within the laboratory, evolution is commonly used to engineer proteins and RNA, but experimental constraints have limited our ability to reproducibly and reliably explore key factors such as population diversity, the timing of environmental changes, and chance. We developed a high-throughput system for the analytical exploration of molecular evolution using phage-based mutagenesis to evolve many distinct classes of biomolecules simultaneously. In this talk, I will describe the development of our open-source python:robot integration platform which enables us to adjust the stringency of selection in response to real-time evolving activity measurements and to dissect the historical, environmental, and random factors governing biomolecular evolution. Finally, I will talk about our many on-going projects which utilize this system to evolve previously intractable biomolecules using novel small-molecule substrates to target the undruggable proteome.

Emma Chory Bio: Emma Chory is a postdoctoral fellow in the Sculpting Evolution Group at MIT, advised by Kevin Esvelt and Jim Collins. Emma’s research utilizes directed evolution, robotics, and chemical biology to evolve biosynthetic pathways for the synthesis of novel peptide-based therapeutics. Emma obtained her PhD in Chemical Engineering in the laboratory of Gerald Crabtree at Stanford University. She is the recipient of the NSF Graduate Research Fellowship and a pre- and postdoctoral NIH NRSA Fellowship.

Yogesh Goyal Appointed Assistant Professor at Northwestern University

Yogesh Goyal, Ph.D.

The Department of Bioengineering is proud to congratulate Yogesh Goyal on his appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University. His lab will be housed within the Center for Synthetic Biology. His appointment will begin in Spring 2022.

Yogesh grew up in Chopra Bazar, a small rural settlement in Jammu and Kashmir, India. He received his undergraduate degree in Chemical Engineering from the Indian Institute of Technology Gandhinagar. Yogesh joined Princeton University for his Ph.D. in Chemical and Biological Engineering, jointly mentored by Professors Stanislav Shvartsman and Gertrud Schüpbach. Yogesh is currently a Jane Coffin Childs Postdoctoral Fellow in the lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn.

“I am so excited for Yogesh beginning his faculty career,” Raj says. “He is a wonderful scientist with a sense of aesthetics. His work is simultaneously significant and elegant, a powerful combination.”

With a unique background in engineering, developmental biology, biophysical modeling, and single-cell biology, Yogesh develops quantitative approaches to problems in developmental biology and cancer drug resistance. As a postdoc, Yogesh developed theoretical and experimental lineage tracing approaches to study how non-genetic fluctuations may arise within genetically identical cancer cells and how these fluctuations affect the outcomes upon exposure to targeted therapy drugs. The Goyal Lab at Northwestern will “combine novel experimental, computational, and theoretical frameworks to monitor, perturb, model, and ultimately control single-cell variabilities and emergent fate choices in development and disease, including cancer and developmental disorders.”

“I am excited to start a new chapter in my academic career at Northwestern University,” Goyal says. “I am grateful for my time at Penn Bioengineering, and I thank my mentor Arjun Raj and the rest of the lab members for making this time intellectually and personally stimulating.”

Congratulations to Dr. Goyal from everyone at Penn Bioengineering!

BE Seminar: “Promoting Appendage/Limb Regeneration in Jellyfish, Drosophila, and Mouse” (Lea Goentoro)

We hope you will join us for our final seminar of the spring semester!

Speaker: Lea Goentoro, Ph.D.
Professor
Biology
California Institute of Technology

Date: Thursday, April 22, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Abstract: Can limb regeneration be induced? In this talk, I will discuss our work to promote regeneration in animals with limited regeneration capacity. I will present our recent discovery of a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.

Lea Goentoro Bio: Lea Goentoro is a Professor of Biology in the Division of Biology and Biological Engineering at the California Institute of Technology. She holds a B.S. in Chemical Engineering from University of Wisconsin, Madison and a Ph.D. in Chemical Engineering from Princeton University. Prior to joining Caltech, she did postdoctoral training in the Department of Systems Biology at Harvard Medical School. Her work has been supported by the Damon-Runyon Cancer Foundation, the James S. McDonnell Foundation, the National Science Foundation, and the National Institute of Health.

Penn, CHOP and Yale Researchers’ Molecular Simulations Uncover How Kinase Mutations Lead to Cancer Progression

by Evan Lerner

A computer model of a mutated anaplastic lymphoma kinase (ALK), a known oncogenic driver in pediatric neuroblastoma.

Kinases are a class of enzymes that are responsible for transferring the main chemical energy source used by the body’s cells. As such, they play important roles in diverse cellular processes, including signaling, differentiation, proliferation and metabolism. But since they are so ubiquitous, mutated versions of kinases are frequently found in cancers. Many cancer treatments involve targeting these mutant kinases with specific inhibitors.

Understanding the exact genetic mutations that lead to these aberrant kinases can therefore be critical in predicting the progression of a given patient’s cancer and tailoring the appropriate response.

To achieve this understanding on a more fundamental level, a team of researchers from the University of Pennsylvania’s School of Engineering and Applied Science and Perelman School of Medicine, the Children’s Hospital of Philadelphia (CHOP) and researchers at the Yale School of Medicine’s Cancer Biology Institute, have constructed molecular simulations of a mutant kinase implicated in pediatric neuroblastoma, a childhood cancer impacting the central nervous system.

Using their computational model to study the relationship between single-point changes in the kinase’s underlying gene and the altered structure of the protein it ultimately produces, the researchers revealed useful commonalities in the mutations that result in tumor formation and growth. Their findings suggest that such computational approaches could outperform existing profiling methods for other cancers and lead to more personalized treatments.

The study, published in the Proceedings of the National Academy of Sciences, was led by Ravi Radhakrishnan, Professor and chair of Penn Engineering’s Department of Bioengineering and professor in its Department of Chemical and Biomolecular Engineering, and Mark A. Lemmon, Professor of Pharmacology at Yale and co-director of Yale’s Cancer Biology Institute. The study’s first authors were Keshav Patil, a graduate student in Penn Engineering’s Department of Chemical and Biomolecular Engineering, along with Earl Joseph Jordan and Jin H. Park, then members of the Graduate Group in Biochemistry and Molecular Biology in Penn’s Perelman School of Medicine. Krishna Suresh, an undergraduate student in Radhakrishnan’s lab, Courtney M. Smith, a graduate student in Lemmon’s lab, and Abigail A. Lemmon, an undergraduate in Lemmon’s lab, contributed to the study. They collaborated with Yaël P. Mossé, Associate Professor of Pediatrics at Penn Medicine and in the division of oncology at CHOP.

“Some cancers rely on the aberrant activation of a single gene product for tumor initiation and progression,” says Radhakrishnan. “This unique mutational signature may hold the key to understanding which patients suffer from aggressive forms of the disease or for whom a given therapeutic drug may yield short- or long-term benefits. Yet, outside of a few commonly occurring ‘hotspot’ mutations, experimental studies of clinically observed mutations are not commonly pursued.”

Read the full post in Penn Engineering Today.