BE Seminar: “Tissue-Inspired Synthetic Biomaterials” (Shelly Peyton)

Shelly R. Peyton, Ph.D.

Speaker: Shelly R. Peyton, Ph.D.
Professor, Armstrong Professional Development Professor
Chemical Engineering, Biomedical Engineering Adjunct
College of Engineering
University of Massachusetts Amherst

Date: Thursday, December 9, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
This seminar will be held virtually, but students registered for BE 699 can gather to watch in Moore 216.

Abstract: Improved experimental model systems are critically needed to better understand cancer progression and bridge the gap between lab bench proof-of-concept studies, validation in animal models, and eventual clinical application. Many methods exist to create biomaterials, including hydrogels, which we use to study cells in contexts more akin to what they experience in the human body. Our lab has multiple approaches to create such biomaterials, based on combinations of poly(ethylene glycol) (PEG) with peptides and zwitterions. In this presentation, I will discuss our synthetic approaches to building life-like materials, how we use these systems to grow cells and understand how a cell’s environment, particularly the extracellular matrix regulates cancer cell growth, dormancy, and drug sensitivity.

Shelly Peyton Bio: Shelly Peyton is the Armstrong Professor and Graduate Program Director, and chair of the Diversity, Equity, and Inclusion (DEI) committee of Chemical Engineering at the University of Massachusetts Amherst. She is co-director of the Models 2 Medicine Center in the Institute for Applied Life Sciences. She received her B.S. in Chemical Engineering from Northwestern University in 2002 and went on to obtain her MS and PhD in Chemical Engineering from the University of California, Irvine. She was then an NIH Kirschstein post-doctoral fellow in the Biological Engineering department at MIT before starting her academic appointment at UMass in 2011. Shelly leads an interdisciplinary group of engineers and molecular cell biologists seeking to create and apply novel biomaterials platforms toward new solutions to grand challenges in human health. Her lab’s unique approach is using our engineering expertise to build simplified models of human tissue with synthetic biomaterials. They use these systems to understand 1) the physical relationship between metastatic breast cancer cells and the tissues to which they spread, 2) the role of matrix remodeling in drug resistance, and 3) how to create bioinspired mechanically dynamic and activatable biomaterials. Among other honors for her work, Shelly was a 2013 Pew Biomedical Scholar, received a New Innovator Award from the NIH, and she was awarded a CAREER grant from the NSF. Shelly is co-PI with Jeanne Hardy on the Biotechnology (BTP) NIH T32 program and is a co-PI of the PREP program at UMass, which brings students from URM groups to UMass for a 1-year post-BS study to help prepare them for graduate school.

Yogesh Goyal Selected as 2021 STAT Wunderkind

Yogesh Goyal, Ph.D.

Yogesh Goyal, Ph.D.,  a postdoctoral researcher in Genetics and Bioengineering, has been selected as a 2021 STAT Wunderkind, which honors the “next generation of scientific superstars.” Goyal’s research is centered around developing novel mathematical and experimental frameworks to study how a rare subpopulation of cancer cells are able to survive drug therapy and develop resistance, resulting in relapse in patients. In particular, his work provides a view of different paths that single cancer cells take when becoming resistant, at unprecedented resolution and scale. This research aims to help devise novel therapeutic strategies to combat the challenge of drug resistance in cancer.

Goyal is a Jane Coffin Childs Postdoctoral Fellow in the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn. He will begin an appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University in spring 2022.

Read the announcement in Penn Medicine News.

Penn Bioengineering Alumna Cynthia Reinhart-King is President Elect of BMES

Dr. Cynthia Reinhart-King, Engineering, BME, Photo by Joe Howell

Penn Bioengineering alumna Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was elected the next President of the Biomedical Engineering Society (BMES), the largest professional society for biomedical engineers. Her term as president-elect started at the annual BMES meeting in October 2021.

Reinhart-King graduated with her Ph.D. from Penn Bioengineering in 2006. She studied in the lab of Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and Chemical and Biomolecular Engineering as a Whitaker Fellow and went on to complete postdoctoral training as an Individual NIH NRSA postdoctoral fellow at the University of Rochester. Prior to joining Vanderbilt, she was on the faculty of Cornell University and received tenure in the Department of Biomedical Engineering. The Reinhart-King lab at Vanderbilt “uses tissue engineering, microfabrication, novel biomaterials, model organisms, and tools from cell and molecular biology to study the effects of mechanical and chemical changes in tissues during disease progression.”

Reinhart-King gave the 2019 Grace Hopper Distinguished Lecture, sponsored by the Department of Bioengineering. This lecture series recognizes successful women in engineering and seeks to inspire students to achieve at the highest level. She is a recipient of numerous prestigious awards, including the Rita Schaffer Young Investigator Award in 2010, an NSF CAREER Award, and the Mid-Career Award in 2018 from BMES.

In a Q&A on the BMES Blog, Reinhart-King said that:

“BMES is facing many challenges, like many societies, as we deal with the hurdles associated with COVID-19 and inequities across society. We must continue to address those challenges. However, we are also in a terrific window of having robust membership, many members who are eager to get involved with the society’s activities, and a national lens on science and scientists. One of my goals will be to identify and create opportunities for our members to help build the reach of the society and its member.”

Read “Cynthia Reinhart-King is president-elect of the Biomedical Engineering Society” in Vanderbilt News.

BE Seminar: “Phage and Robotics-Assisted Biomolecular Evolution” (Emma Chory)

Emma Chory, Ph.D.

Speaker: Emma Chory, Ph.D.
Postdoctoral Fellow
Sculpting Evolution Laboratory
Massachusetts Institute of Technology

Date: Thursday, October 21, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu
Room: Moore 216

Abstract: Evolution occurs when selective pressures from the environment shape inherited variation over time. Within the laboratory, evolution is commonly used to engineer proteins and RNA, but experimental constraints have limited our ability to reproducibly and reliably explore key factors such as population diversity, the timing of environmental changes, and chance. We developed a high-throughput system for the analytical exploration of molecular evolution using phage-based mutagenesis to evolve many distinct classes of biomolecules simultaneously. In this talk, I will describe the development of our open-source python:robot integration platform which enables us to adjust the stringency of selection in response to real-time evolving activity measurements and to dissect the historical, environmental, and random factors governing biomolecular evolution. Finally, I will talk about our many on-going projects which utilize this system to evolve previously intractable biomolecules using novel small-molecule substrates to target the undruggable proteome.

Emma Chory Bio: Emma Chory is a postdoctoral fellow in the Sculpting Evolution Group at MIT, advised by Kevin Esvelt and Jim Collins. Emma’s research utilizes directed evolution, robotics, and chemical biology to evolve biosynthetic pathways for the synthesis of novel peptide-based therapeutics. Emma obtained her PhD in Chemical Engineering in the laboratory of Gerald Crabtree at Stanford University. She is the recipient of the NSF Graduate Research Fellowship and a pre- and postdoctoral NIH NRSA Fellowship.

Yogesh Goyal Appointed Assistant Professor at Northwestern University

Yogesh Goyal, Ph.D.

The Department of Bioengineering is proud to congratulate Yogesh Goyal on his appointment as Assistant Professor in the Department of Cell and Developmental Biology (CDB) in the Feinberg School of Medicine at Northwestern University. His lab will be housed within the Center for Synthetic Biology. His appointment will begin in Spring 2022.

Yogesh grew up in Chopra Bazar, a small rural settlement in Jammu and Kashmir, India. He received his undergraduate degree in Chemical Engineering from the Indian Institute of Technology Gandhinagar. Yogesh joined Princeton University for his Ph.D. in Chemical and Biological Engineering, jointly mentored by Professors Stanislav Shvartsman and Gertrud Schüpbach. Yogesh is currently a Jane Coffin Childs Postdoctoral Fellow in the lab of Arjun Raj, Professor in Bioengineering and Genetics at Penn.

“I am so excited for Yogesh beginning his faculty career,” Raj says. “He is a wonderful scientist with a sense of aesthetics. His work is simultaneously significant and elegant, a powerful combination.”

With a unique background in engineering, developmental biology, biophysical modeling, and single-cell biology, Yogesh develops quantitative approaches to problems in developmental biology and cancer drug resistance. As a postdoc, Yogesh developed theoretical and experimental lineage tracing approaches to study how non-genetic fluctuations may arise within genetically identical cancer cells and how these fluctuations affect the outcomes upon exposure to targeted therapy drugs. The Goyal Lab at Northwestern will “combine novel experimental, computational, and theoretical frameworks to monitor, perturb, model, and ultimately control single-cell variabilities and emergent fate choices in development and disease, including cancer and developmental disorders.”

“I am excited to start a new chapter in my academic career at Northwestern University,” Goyal says. “I am grateful for my time at Penn Bioengineering, and I thank my mentor Arjun Raj and the rest of the lab members for making this time intellectually and personally stimulating.”

Congratulations to Dr. Goyal from everyone at Penn Bioengineering!

BE Seminar: “Promoting Appendage/Limb Regeneration in Jellyfish, Drosophila, and Mouse” (Lea Goentoro)

We hope you will join us for our final seminar of the spring semester!

Speaker: Lea Goentoro, Ph.D.
Professor
Biology
California Institute of Technology

Date: Thursday, April 22, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Abstract: Can limb regeneration be induced? In this talk, I will discuss our work to promote regeneration in animals with limited regeneration capacity. I will present our recent discovery of a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.

Lea Goentoro Bio: Lea Goentoro is a Professor of Biology in the Division of Biology and Biological Engineering at the California Institute of Technology. She holds a B.S. in Chemical Engineering from University of Wisconsin, Madison and a Ph.D. in Chemical Engineering from Princeton University. Prior to joining Caltech, she did postdoctoral training in the Department of Systems Biology at Harvard Medical School. Her work has been supported by the Damon-Runyon Cancer Foundation, the James S. McDonnell Foundation, the National Science Foundation, and the National Institute of Health.

Penn, CHOP and Yale Researchers’ Molecular Simulations Uncover How Kinase Mutations Lead to Cancer Progression

by Evan Lerner

A computer model of a mutated anaplastic lymphoma kinase (ALK), a known oncogenic driver in pediatric neuroblastoma.

Kinases are a class of enzymes that are responsible for transferring the main chemical energy source used by the body’s cells. As such, they play important roles in diverse cellular processes, including signaling, differentiation, proliferation and metabolism. But since they are so ubiquitous, mutated versions of kinases are frequently found in cancers. Many cancer treatments involve targeting these mutant kinases with specific inhibitors.

Understanding the exact genetic mutations that lead to these aberrant kinases can therefore be critical in predicting the progression of a given patient’s cancer and tailoring the appropriate response.

To achieve this understanding on a more fundamental level, a team of researchers from the University of Pennsylvania’s School of Engineering and Applied Science and Perelman School of Medicine, the Children’s Hospital of Philadelphia (CHOP) and researchers at the Yale School of Medicine’s Cancer Biology Institute, have constructed molecular simulations of a mutant kinase implicated in pediatric neuroblastoma, a childhood cancer impacting the central nervous system.

Using their computational model to study the relationship between single-point changes in the kinase’s underlying gene and the altered structure of the protein it ultimately produces, the researchers revealed useful commonalities in the mutations that result in tumor formation and growth. Their findings suggest that such computational approaches could outperform existing profiling methods for other cancers and lead to more personalized treatments.

The study, published in the Proceedings of the National Academy of Sciences, was led by Ravi Radhakrishnan, Professor and chair of Penn Engineering’s Department of Bioengineering and professor in its Department of Chemical and Biomolecular Engineering, and Mark A. Lemmon, Professor of Pharmacology at Yale and co-director of Yale’s Cancer Biology Institute. The study’s first authors were Keshav Patil, a graduate student in Penn Engineering’s Department of Chemical and Biomolecular Engineering, along with Earl Joseph Jordan and Jin H. Park, then members of the Graduate Group in Biochemistry and Molecular Biology in Penn’s Perelman School of Medicine. Krishna Suresh, an undergraduate student in Radhakrishnan’s lab, Courtney M. Smith, a graduate student in Lemmon’s lab, and Abigail A. Lemmon, an undergraduate in Lemmon’s lab, contributed to the study. They collaborated with Yaël P. Mossé, Associate Professor of Pediatrics at Penn Medicine and in the division of oncology at CHOP.

“Some cancers rely on the aberrant activation of a single gene product for tumor initiation and progression,” says Radhakrishnan. “This unique mutational signature may hold the key to understanding which patients suffer from aggressive forms of the disease or for whom a given therapeutic drug may yield short- or long-term benefits. Yet, outside of a few commonly occurring ‘hotspot’ mutations, experimental studies of clinically observed mutations are not commonly pursued.”

Read the full post in Penn Engineering Today.

Manuela Raimondi Appointed Visiting Professor in Bioengineering

Manuela Raimondi, PhD

Manuela Teresa Raimondi was appointed Visiting Professor in Bioengineering in the Associated Faculty of the School of Engineering and Applied Science for the 2020-2021 academic year. Raimondi received her Ph.D. in Bioengineering in 2000 from Politecnico di Milano, Italy. She is currently a Full Professor of Bioengineering at Politecnico di Milano in the Department of Chemistry, Materials and Chemical Engineering “G. Natta”, where she teaches the course “Technologies for Regenerative Medicine” in the Biomedical Engineering graduate program.

Raimondi is the founder and Director of the Mechanobiology Lab and of the Interdepartmental Live Cell Imaging lab. She has pioneered the development of cutting edge tools for cell modelling, ranging from micro-engineered stem cell niches, to miniaturized windows for in vivo intravital imaging, to microfluidic culture systems to engineer tissue-equivalents and organoids for cell modelling and drug discovery. Her platforms are currently commercialized by her start-up, MOAB srl. Her research is funded by the European Research Council (ERC), by The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), by the European Commission, and by the European Space Agency.

“Getting to Penn was quite the challenge with the various travel restrictions and the pandemic, but I am used to overcoming adverse odds and I am really excited to be here now,” says Dr. Raimondi. “In this challenging time, when many new barriers are coming up, I think building bridges and new scientific collaborations is even more important. I very much look forward to being part of the Penn research community.”

Dr. Raimondi with host Riccardo Gottardi, PhD on Smith Walk

During her sabbatical at Penn, Raimondi is investigating her hypothesis that stem cells pluripotency reprogramming can be guided by mechanical cues. Over the past five years, she has cultured many different stem cell types in the “Nichoids,” the synthetic stem cell niche she developed, and gathered robust evidence on how physical constraints at the microscale level upregulate pluripotency. Raimondi is hosted in the Bioengineering and Biomaterials Lab of Riccardo Gottardi, Assistant Professor in Bioengineering and in Pediatrics at the Perelman School of Medicine, where she is helping to refine human stem cell sources that could be minimally manipulated for translational tissue engineering for a safe and effective use in regenerative therapies, as a key issue for clinical translation is the maintenance or enhancement of multipotency during cell expansion without exogenous agents or genetic modification.

“Dr. Raimondi is a trailblazer in Italy in regenerative medicine who has introduced many new concepts in a sometimes musty academic environment and has shattered a number of glass ceilings,” says Dr. Gottardi. “I think her sabbatical at Penn is a great opportunity for her and for the Penn community to build new and exciting trans-Atlantic collaborations.”

César de la Fuente on AIChE’s 35 Under 35 List

César de la Fuente, PhD

César de la Fuente, Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering, was named one of the American Institute of Chemical Engineers’ (AIChE) 35 members under 35 for 2020.

“The AIChE 35 Under 35 Award was founded to recognize young chemical engineers who have achieved greatness in their fields,” reads the 2020 award announcement. “The winners are a group of driven, engaged, and socially active professionals, representing the breadth and diversity that chemical engineering exemplifies.”

De la Fuente was named in the list’s “Bioengineering” category for his his lab’s work in machine biology. Their goal is to develop computer-made tools and medicines that will combat antibiotic resistance. De la Fuente has already been featured on several other young innovators lists, including MIT Technology Review’s 35 under 35 and GEN’s Top 10 under 40, both in 2019. His research in antibiotic resistance has been profiled in Penn Today and Penn Engineering Today, and he was recently awarded Penn Health-Tech’s inaugural NEMO Prize for his proposal to develop paper-based COVID diagnostic system that could capture viral particles on a person’s breath.

In addition to being named on the 2020 list, the honorees will receive a $500 prize and will be celebrated at the 2020 AIChE Annual Meeting this November.

Learn more about de la Fuente’s pioneering research on his lab website.

BE Seminar: “Predicting the Effects of Engineering Immune Cells Using Systems Biology Modeling” (Stacey Finley, USC)

The Penn Bioengineering virtual seminar series continues on October 1st.

Stacey Finley, PhD

 

Speaker: Stacey Finley, Ph.D.
Gordon S. Marshall Early Career Chair and Associate Professor of Biomedical Engineering and Biological Sciences
University of Southern California

 

Date: Thursday, October 1, 2020
Time: 3:00-4:00 pm
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Predicting the Effects of Engineering Immune Cells Using Systems Biology Modeling”

Abstract:

Systems biology approaches, including computational models, provide a framework to test biological hypotheses and optimize effective therapeutic strategies to treat human diseases. In this talk, I present recent work in modeling signaling in cancer-targeting immune cells, including CAR T cells at Natural Killer cells. Chimeric antigen receptors (CARs) are comprised of a variety of different activating domains and co-stimulatory domains that initiate signaling required for T cell activation. There is a lack of understanding of the mechanisms by which activation occurs. We apply mathematical modeling to investigate how CAR structure influences downstream T cell signaling and develop new hypotheses for the optimal design of CAR-engineered T cell systems. Natural Killer cells also provide a useful platform for targeting cancer cells. However, NK cells have been shown to exhibit reduced killing ability with prolonged stimulation by cancer cells. We use a combination of mechanistic model, optimal control theory and in silico synthetic biology to investigate strategies to enhance NK cell-mediated killing.

Bio:

Stacey D. Finley is the Gordon S. Marshall Early Career Chair and Associate Professor of Biomedical Engineering at the University of Southern California. Dr. Finley received her B.S. in Chemical Engineering from Florida A & M University and obtained her Ph.D. in Chemical Engineering from Northwestern University. She completed postdoctoral training at Johns Hopkins University in the Department of Biomedical Engineering. Dr. Finley joined the faculty at USC in 2013, and she leads the Computational Systems Biology Laboratory. Dr. Finley has joint appointments in the Departments of Chemical Engineering and Materials Science and Biological Science, and she is a member of the USC Norris Comprehensive Cancer Center. Dr. Finley is also the Director of the Center for Computational Modeling of Cancer at USC. Her research is supported by grants from NSF, NIH, and the American Cancer Society.

Selected honors: 2016 NSF Faculty Early CAREER Award; 2016 Young Innovator by the Cellular and Molecular Bioengineering journal; Leah Edelstein-Keshet Prize from the Society of Mathematical Biology; Junior Research Award from the USC Viterbi School of Engineering; the Hanna Reisler Mentorship Award; 2018 AACR NextGen Star; 2018 Orange County Engineering Council Outstanding Young Engineer

See the full list of upcoming Penn Bioengineering fall seminars here.