Why New Cancer Treatments are Proliferating

by Karen L. Brooks

Doctors performing surgery.
Image: Penn Medicine News

In the five years since the FDA’s initial approval of chimeric antigen receptor (CAR) T cell therapy, Penn Medicine has gleaned 20 additional approvals related to drugs and techniques to treat or detect cancer.

Rather than being the single disease class many people refer to, “cancer” is a blanket term that covers more than 100 distinct diseases, many of which have little in common aside from originating with rapidly dividing cells. Since different cancers demand different treatments, it follows that any given new therapy emerging from any institution would be likely to be a new cancer treatment.

But why so many in just this five-year period?

The volume of new cancer treatments makes sense, says Abramson Cancer Center (ACC) director Robert Vonderheide, attributing the flurry of new cancer drug approvals to a recent “explosion” in knowledge about cancer biology.

“Much of that knowledge is about the immune system’s ability to attack cancer, which people seriously doubted until about 20 years ago. As soon as we had a clinical validation for this Achilles heel in cancer, the dam burst for ideas about other ways to exploit that vulnerability to come forward,” he says. “The first drug that came out to activate the immune system inspired the rest of the field to find the next drug, and the one after that. We as a field have moved from serendipity and empiricism to science-driven drug design.”

The first CAR T cell therapy approval invigorated Penn faculty interested in finding new ways to harness the immune system to fight cancer.

“An approval like that makes what you’re working on more of a reality,” says Avery Posey, an assistant professor of systems pharmacology and translational therapeutics in the Perelman School of Medicine, whose lab team spends much of its time trying to identify more specific antigens for solid tumors and also studies ways to optimize engineered donor T cells. “It brings a new perspective, showing that your work is more than basic research and can actually become drugs that impact patients’ lives. That’s a real motivator to keep pushing forward.”

Honing new immunotherapies is a priority among Penn researchers, but not every recently approved new cancer treatment or detection tool developed at the institution engages the immune system. Faculty have explored and introduced widely varying approaches to improving the standard of care for cancer patients.

Read the full story in Penn Medicine Magazine.

Avery Posey is a member of the Penn Bioengineering Graduate Group. Read more stories featuring Posey here.

Puneeth Guruprasad Wins 2023 Penn Prize for Excellence in Teaching by Graduate Students

Front, from left to right: Lucy Andersen, Vice Provost for Education Karen Detlefsen, Derek Yang, Ann Ho, and Arianna James. Back, from left to right: Ritesh Isuri, Adiwid (Boom) Devahastin Na Ayudhya, Oualid Merzouga, and Puneeth Guruprasad.

Ten winners of the 2023 Penn Prize for Excellence in Teaching by Graduate Students were announced at a ceremony held April 13 at the Graduate Student Center. The recipients, who represented five of Penn’s 12 schools, were recognized among a pool of 44 Ph.D. candidates and master’s students nominated primarily by undergraduates—a quality unique to and cherished about this Prize.

“It’s a particularly authentic expression of gratitude from undergraduates, and that’s really the pleasure [of presenting these awards],” says Vice Provost for Education Karen Detlefsen, who was present to announce the winners and award them with a certificate. (They also receive a monetary award.) “I’m so proud of our students: Our undergraduates, for taking the time to recognize what it is our graduate students contribute to the student body, and the graduate students who are contributing to the life of the University.

“Students are the lifeblood of the University and without them, we wouldn’t be here.”

The Prize began in the 1999-2000 academic year under former Penn President Judith Rodin. It was spearheaded by then-doctoral-candidate Eric Eisenstein and has been issued every year since. Nominations for the Prize often mention how graduate teaching assistants were able to take a complex subject and make it relatable or craft a course like philosophy or mathematics into an enjoyable—even highly anticipated—experience for students.

“Many nominations show how much students value a TA or a graduate instructor of record who shows that they care for their learning and for them as people, and who makes themself readily available to assist,” says Ian Petrie, director of graduate student programming for the Center for Teaching and Learning, who organizes the selection committee for the Prize. “Typically, however, committee members are also interested in seeing nominations that really point to how a graduate student instructor taught or gave feedback—not just how responsive they were to emails or how many office hours they had.”

He also emphasizes that many winners this year were not just teachers, but mentors—often helping undergraduates or new graduate students navigate not only the course but also Penn as an institution.

Puneeth Guruprasad

One of the winners, Puneeth Guruprasad, hails from Penn Bioengineering. Guruprasad is a fourth-year Ph.D. student in Bioengineering who conducts research in the lab of Marco Ruella, Assistant Professor of Medicine in the Division of Hematology/Oncology in the Perelman School of Medicine. Ruella is also a member of the Center for Cellular Immunotherapies (CCI) and the Penn Bioengineering Graduate Group.

Guruprasad studies mechanisms of resistance to chimeric antigen receptor (CAR) T cell therapy for cancer. He has served as a teaching assistant for five semesters: three for Intro to Biotransport Processes (BE 3500) taught by Alex Hughes, Assistant Professor in Bioengineering, and two for Cellular Engineering (BE 3060), taught by Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and in Chemical and Biomolecular Engineering. Both courses are a part of the core curriculum for undergraduate bioengineering students. His doctoral thesis focuses on how a specific interaction between CAR T cells and tumor cells limits their function across a range of cancers.

“I make myself approachable outside the classroom, and I think that’s one aspect of being a TA: having responsibilities that extend beyond the classroom,” says Guruprasad. “Dozens of times, I’ve spoken to students over coffee, or over some lunch, about what direction they want to take in their life, what they want to do outside of the course, and give them my two cents of advice. I try to individualize.”

This post was adapted from an original story by Brandon Baker in Penn Today. Read the full story and list of 2023 winners here.

Carl H. June, MD, FAACR, Honored with 2023 AACR Award for Lifetime Achievement in Cancer Research

Carl June, MD

 The American Association for Cancer Research (AACR), the largest cancer research organization in the country and based in Philadelphia, will bestow its 2023 Award for Lifetime Achievement in Cancer Research to Carl June, Richard W. Vague Professor in Immunotherapy in the Department of Pathology and Laboratory Medicine at Penn Medicine. June is also Director of the Center for Cellular Immunotherapies, Director of the Parker Institute for Cancer Immunotherapy, and member of the Penn Bioengineering Graduate Group. He is recognized for his groundbreaking work in developing the first gene-editing cell therapy for cancer and for his pioneering work with CAR T cell therapy.

Read the press release on the AACR website.

A Potential Strategy to Improve T Cell Therapy in Solid Tumors

A new Penn Medicine preclinical study demonstrates a simultaneous ‘knockout’ of two inflammatory regulators boosts T cell expansion to attack solid tumors.

by Meagan Raeke

Image: Courtesy of Penn Medicine News

A new approach that delivers a “one-two punch” to help T cells attack solid tumors is the focus of a preclinical study by researchers from the Perelman School of Medicine. The findings, published in the Proceedings of the National Academy of Sciences, show that targeting two regulators that control gene functions related to inflammation led to at least 10 times greater T cell expansion in models, resulting in increased anti-tumor immune activity and durability.

CAR T cell therapy was pioneered at Penn Medicine by Carl H. June, the Richard W. Vague Professor in Immunotherapy at Penn and director of the Center for Cellular Immunotherapies (CCI) at Abramson Cancer Center, whose work led to the first approved CAR T cell therapy for B-cell acute lymphoblastic leukemia in 2017. Since then, personalized cellular therapies have revolutionized blood cancer treatment, but remained stubbornly ineffective against solid tumors, such as lung cancer and breast cancer.

“We want to unlock CAR T cell therapy for patients with solid tumors, which include the most commonly diagnosed cancer types,” says June, the new study’s senior author. “Our study shows that immune inflammatory regulator targeting is worth additional investigation to enhance T cell potency.”

One of the challenges for CAR T cell therapy in solid tumors is a phenomenon known as T cell exhaustion, where the persistent antigen exposure from the solid mass of tumor cells wears out the T cells to the point that they aren’t able to mount an anti-tumor response. Engineering already exhausted T cells from patients for CAR T cell therapy results in a less effective product because the T cells don’t multiply enough or remember their task as well.

Previous observational studies hinted at the inflammatory regulator Regnase-1 as a potential target to indirectly overcome the effects of T cell exhaustion because it can cause hyperinflammation when disrupted in T cells—reviving them to produce an anti-tumor response. The research team, including lead author David Mai, a bioengineering graduate student in the School of Engineering and Applied Science, and co-corresponding author Neil Sheppard, head of the CCI T Cell Engineering Lab, hypothesized that targeting the related, but independent Roquin-1 regulator at the same time could boost responses further.

“Each of these two regulatory genes has been implicated in restricting T cell inflammatory responses, but we found that disrupting them together produced much greater anti-cancer effects than disrupting them individually,” Mai says. “By building on previous research, we are starting to get closer to strategies that seem to be promising in the solid tumor context.”

Read the full story in Penn Medicine News.

June is a member of the Penn Bioengineering Graduate Group. Read more stories featuring June’s research here.

Carl June and Avery Posey Lead the Way in CAR T Cell Therapy

Perelman School of Medicine (PSOM) professors and Penn Bioengineering Graduate Group members Carl June and Avery Posey are leading the charge in T cell therapy and the fight against cancer.

Avery Posey, PhD
Carl June, MD

Advances in genome editing through processes such as CRISPR, and the ability to rewire cells through synthetic biology, have led to increasingly elaborate approaches for modifying and supercharging T cells for therapy. Avery Posey,  Assistant Professor of Pharmacology, and Carl June, the Richard W. Vague Professor in Immunotherapy, explain how new techniques are providing tools to counter some of the limitations of current CAR T cell therapies in a recent Nature feature.

The pair were also part of a team of researchers from PSOM, the Children’s Hospital of Philadelphia (CHOP), and the Corporal Michael J. Crescenz VA Medical Center to receive an inaugural $8 million Therapy ACceleration To Intercept CAncer Lethality (TACTICAL) Award from the Prostate Cancer Foundation. Their project will develop new clinic-ready CAR T cell therapies for Metastatic Castrate-Resistant Prostate Cancer (mCRPC).

Read “The race to supercharge cancer-fighting T cells” in Nature.

Read about the TACTICAL Award in the December 2022 Awards & Accolades section of Penn Medicine News.

CAR T Cell Therapy Reaches Beyond Cancer

Penn Medicine researchers laud the early results for CAR T therapy in lupus patients, which point to broader horizons for the use of personalized cellular therapies.

Penn Medicine’s Carl June and Daniel Baker.

Engineered immune cells, known as CAR T cells, have shown the world what personalized immunotherapies can do to fight blood cancers. Now, investigators have reported highly promising early results for CAR T therapy in a small set of patients with the autoimmune disease lupus. Penn Medicine CAR T pioneer Carl June and Daniel Baker, a doctoral student in cell and molecular biology in the Perelman School of Medicine, discuss this development in a commentary published in Cell.

“We’ve always known that in principle, CAR T therapies could have broad applications, and it’s very encouraging to see early evidence that this promise is now being realized,” says June, who is the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine at Penn Medicine and director of the Center for Cellular Immunotherapies at the Abramson Cancer Center.

T cells are among the immune system’s most powerful weapons. They can bind to, and kill, other cells they recognize as valid targets, including virus-infected cells. CAR T cells are T cells that have been redirected, through genetic engineering, to efficiently kill specifically defined cell types.

CAR T therapies are created out of each patient’s own cells—collected from the patient’s blood, and then engineered and multiplied in the lab before being reinfused into the patient as a “living drug.” The first CAR T therapy, Kymriah, was developed by June and his team at Penn Medicine, and received Food & Drug Administration approval in 2017. There are now six FDA-approved CAR T cell therapies in the United States, for six different cancers.

From the start of CAR T research, experts believed that T cells could be engineered to fight many conditions other than B cell cancers. Dozens of research teams around the world, including teams at Penn Medicine and biotech spinoffs who are working to develop effective treatments from Penn-developed personalized cellular therapy constructs, are examining these potential new applications. Researchers say lupus is an obvious choice for CAR T therapy because it too is driven by B cells, and thus experimental CAR T therapies against it can employ existing anti-B-cell designs. B cells are the immune system’s antibody-producing cells, and, in lupus, B cells arise that attack the patient’s own organs and tissues.

This story is by Meagan Raeke. Read more at Penn Medicine News.

Carl June is a member of the Penn Bioengineering Graduate Group. Read more stories featuring June’s research here.

2022 Career Award Recipient: Michael Mitchell

by Melissa Pappas

Michael Mitchell (Illustration by Melissa Pappas)

Michael Mitchell, J. Peter and Geri Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, is one of this year’s recipients of the National Science Foundation’s CAREER Award. The award is given to early-career faculty researchers who demonstrate the potential to be role models in their field and invest in the outreach and education of their work.

Mitchell’s award will fund research on techniques for “immunoengineering” macrophages. By providing new instructions to these cells via nanoparticles laden with mRNA and DNA sequences, the immune system could be trained to target and eliminate solid tumors. The award will also support graduate students and postdoctoral fellows in his lab over the next five years.

The project aligns with Mitchell’s larger research goals and the current explosion of interest in therapies that use mRNA, thanks to the technological breakthroughs that enabled the development of COVID-19 vaccines.

“The development of the COVID vaccine using mRNA has opened doors for other cell therapies,” says Mitchell. “The high-priority area of research that we are focusing on is oncological therapies, and there are multiple applications for mRNA engineering in the fight against cancer.”

A new wave of remarkably effective cancer treatments incorporates chimeric antigen receptor T-cell (CAR-T) therapy. There, a patient’s T-cells, a type of white blood cell that fights infections, are genetically engineered to identify, target and kill individual cancer cells that accumulate in the circulatory system.

However, despite CART-T therapy’s success in treating certain blood cancers, the approach is not effective against cancers that form solid tumors. Because T-cells are not able to penetrate tumors’ fibrous barriers, Mitchell and his colleagues have turned to another part of the immune system for help.

Read the full story in Penn Engineering Today.

Penn Medicine CAR T Therapy Expert Carl June Receives 2022 Keio Medical Science Prize

by Brandon Lausch

The award from Japan’s oldest private university honors outstanding contributions to medicine and life sciences.

Richard W. Vague Professor in Immunotherapy Carl June.

Carl June, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in the Perelman School of Medicine and director of the Center for Cellular Immunotherapies at Penn’s Abramson Cancer Center, has been named a 2022 Keio Medical Science Prize Laureate. He is recognized for his pioneering role in the development of CAR T cell therapy for cancer, which uses modified versions of patients’ own immune cells to attack their cancer.

The Keio Medical Science Prize is an annual award endowed by Keio University, Japan’s oldest private university, which recognizes researchers who have made an outstanding contribution to the fields of medicine or the life sciences. It is the only prize of its kind awarded by a Japanese university, and eight laureates of this prize have later won the Nobel Prize. Now in its 27th year, the prize encourages the expansion of researcher networks throughout the world and contributes to the well-being of humankind.

“Dr. June exemplifies the spirit of curiosity and fortitude that make Penn home to so many ‘firsts’ in science and medicine,” said Penn President Liz Magill. “His work provides hope to cancer patients and their families across the world, and inspiration to our global community of physicians and scientists who are working to develop the next generation of treatments and cures for diseases of all kinds.”

Read the full story in Penn Today.

June is a member of the Penn Bioengineering Graduate Group. Read more stories featuring June’s research here.

Penn Startup Vittoria Biotherapeutics Raises $10M in Seed Funding

Marco Ruella, MD

A Philadelphia life sciences company spun out of Penn is emerging from stealth mode with nearly $10 million from a seed funding round. Vittoria Biotherapeutics’ mission is to overcome limitations of CAR T cell therapy by using unique cell engineering and gene editing technologies to create new therapies that address unmet clinical needs. The technology the company is attempting to commercialize was developed by Marco Ruella, M.D., Assistant Professor of Medicine in the Perelman School of Medicine and member of the Penn Bioengineering Graduate Group, who is the company’s scientific founder.

Read “Penn spinout Vittoria Biotherapeutics emerges from stealth mode with $10M seed round” in the Philadelphia Business Journal.

Penn Medicine and Children’s Hospital of Philadelphia Announce Partnership with Costa Rica for CAR T Cell Therapy

Carl June, MD

Carl June, MD, Professor in the Perelman School of Medicine and member of the Penn Bioengineering Graduate Group, was quoted in a recent press release  announcing a new international partnership between Penn Medicine (PSOM), the Children’s Hospital of Pennsylvania (CHOP), and Costa Rica’s CCSS, or the Caja Costarricense de Seguro Social (Social Security Program), to develop CAR T research in Costa Rica. June is a world renowned cancer cell therapy pioneer whose research led to the initial development and FDA approval of CAR T cell therapy:

“‘At least 15,000 patients across the world have received CAR T cells, and dozens more clinical trials using this approach are in progress, for almost every major tumor type, but people in many parts of the globe still do not have access to treatment with these transformative therapies,’ said Carl H. June, MD, the Richard W. Vague Professor in Immunotherapy and director of the Center for Cellular Immunotherapies in Penn’s Perelman School of Medicine. “We are honored to work with our colleagues in Costa Rica in hopes of building a path for patients in underserved areas to have the opportunity to benefit from clinical research programs offering this personalized therapy.’”

Read the the announcement in Penn Medicine News.