Penn Health-Tech Q&A with César de la Fuente

Created in the lab of César de la Fuente, this miniaturized, portable version of rapid COVID-19 test, which is compatible with smart devices, can detect SARS-CoV-2 within four minutes with nearly 100% accuracy. (Image: Courtesy of César de la Fuente)

César de la Fuente, Presidential Assistant Professor in Bioengineering, Chemical and Biomolecular Engineering, Microbiology, and Psychiatry, was the inaugural recipient of the Nemirovsky Engineering and Medicine Opportunity (NEMO) Prize from Penn Health-Tech in 2020 for his low-cost, rapid COVID test. Now with promising results recently published in the journal Matter (showing 90 percent accuracy in as little as four minutes), Penn Health-Tech caught up with de la Fuente to discuss his experience over the past year:

“How did [your project] evolve in the past year?

‘We started with one prototype and now have three entirely different prototypes for the test. Two use electrochemistry, and we are now working on a new technology that uses calorimetry. With calorimetry, when the cotton swabs are exposed to the virus, they change color. This means users are able to see if they’re affected by a virus through a simple color change, making it more of a visual detection method.'”

Read the full Q&A in the Penn Health-Tech blog.

Bioengineering Graduate Gabriel DeSantis Awarded Fulbright Grant

Gabriel DeSantis (BSE 2020, MSE 2021)

Congratulations to recent Penn Bioengineering graduate Gabriel DeSantis on being awarded a Fulbright grant for the 2021-22 academic year:

“The Fulbright Program is the United States government’s flagship international educational exchange program, awarding grants to fund as long as 12 months of international experience.

‘As an avenue for building cross-cultural understanding, the U.S. Student Fulbright Program is an unparalleled opportunity for American students to represent our country and our University across the world,’ says Jane Morris, executive director of Penn’s Center for Undergraduate Research and Fellowships, which supports applicants. ‘We are so proud of all our Penn Fulbright students who will be contributing to this important mission through their study, research, and English teaching as Fulbrighters.’

Gabriel DeSantis, from Wellesley, Massachusetts, received his bachelor’s degree from Penn Bioengineering in 2020 and will graduate in May with a master’s degree in bioengineering from the School of Engineering and Applied Science. He was awarded a Fulbright to conduct research in Portugal at the International Iberian Nanotechnology Laboratory. There he will be creating a 3D bio-printed model to optimize the texture and nutritional profiles of cultivated meat. At Penn his academic interests included biology, food science, and sustainability, which he hopes to use to develop new systems of food production. On campus, DeSantis was a Penn Abroad Leader and board member of the Graduate Association of Bioengineers. He is a past chair of the Mask and Wig Club. He currently works as a research assistant for Allevi, a Philadelphia-based bioprinting company at Pennovation Works.”

Read the full list of Fulbright awardees in Penn Today.

Rapid COVID-19 Diagnostic Test Delivers Results Within 4 Minutes With 90 Percent Accuracy

RAPID, a low-cost COVID-19 diagnostic test, can detect SARS-CoV-2 within four minutes with 90 percent accuracy

Even as COVID-19 vaccinations are being rolled out, testing for active infections remains a critical tool in fighting the pandemic. Existing rapid tests that can directly detect the virus rely on reverse transcription polymerase chain reaction (RT-PCR), a common genetic assay that nevertheless requires trained technicians and lab space to conduct.

Alternative testing methods that can be scaled up and deployed in places where those are in short supply are therefore in high demand.

Penn researchers have now demonstrated such a method, which senses the virus by measuring the change in an electrical signal when a piece of the SARS-CoV-2 virus binds to a biosensor in their device, which they call RAPID 1.0.

The work, published in the journal Matter, was led by César de la Fuente, a Presidential Assistant Professor who has appointments in Engineering’s departments of Chemical and Biomolecular Engineering, and Bioengineering, as well as in Psychiatry and Microbiology in the Perelman School of Medicine.

“Prior to the pandemic, our lab was working on diagnostics for bacterial infections. But then, COVID-19 hit. We felt a responsibility to use our expertise to help—and the diagnostic space was ripe for improvements,” de la Fuente said. “We feel strongly about the health inequities witnessed during the pandemic, with testing access and the vaccine rollout, for example. We believe inexpensive diagnostic tests like RAPID could help bridge some of those gaps.”

The RAPID technology uses electrochemical impedance spectroscopy (EIS), which transforms the binding event between the SARS-CoV-2 viral spike protein and its receptor in the human body, the protein ACE2 (which provides the entry point for the coronavirus to hook into and infect human cells), into an electrical signal that clinicians and technicians can detect. That signal allows the test to discriminate between infected and healthy human samples. The signal can be read through a desktop instrument or a smartphone.

Read more about RAPID at Penn Medicine News.

Originally posted on Penn Engineering Today.

Bioengineering Graduate Students Take the Annual BETA Day Online

By GABE Outreach Chairs and Ph.D. students David Gonzalez-Martinez and David Mai

BETA Day Biomaterials workshop

Every spring, the Graduate Association of Bioengineers (GABE) at Penn partners up with iPraxis, an educational non-profit organization based in Philadelphia, to organize BETA Day, an event that brings together Bioengineering graduate students and local Philadelphia grade school students to introduce them to the field of bioengineering, the life of graduate students, and hands-on scientific demonstrations. Due to COVID-19 restrictions, we adapted the traditional in-person BETA Day into a virtual event on Zoom. This year, we assembled kits containing the necessary materials for our chosen demonstrations and worked with iPraxis to coordinate their delivery to partner schools and their students. This enabled students to perform their demonstrations in a hands-on manner from their own homes; over 40 students were able to participate in extracting their own DNA and making biomaterials with safe household materials.

Michelle Johnson presents on her work in robotics

The day began with a fantastic lecture by Michelle Johnson, Associate Professor in Bioengineering and Physical Medicine and Rehabilitation, who introduced students to the field of rehabilitation robotics and shared her experience as a scientist. Students then learned about DNA and biomaterials through lectures mediated by the graduate students Dayo Adetu and Puneeth Guruprasad. After each lecture, students broke into breakout rooms with graduate student facilitators where they were able to get some hands-on scientific experience as they extracted DNA from their cheek cells and fabricated alginate hydrogels. Michael Sobrepera, a graduate student in Dr. Johnson’s lab, concluded the event by giving a lecture on the process of robotics development and discussed where the field is heading and some important considerations for the field.

Dayo Adetu, Bioengineering Master’s student and GABE President, teaches the students about Genetic Engineering

While yet another online event may seem unexciting, throughout the lectures students remained exceptionally engaged and raised fantastic questions ranging from the accessibility of low income communities to novel robotic therapeutic technologies to the bioethical questions robotic engineers will face as technologies advance. The impact of BETA day was evident as the high school students began to discuss the possible majors they would like to pursue for their bachelor’s degrees. Events like BETA Day give a glimpse into possible STEM fields and careers students can pursue.

“Educating the Next Generation of Civically Engaged Technologists”

Brit Shields, Ph.D.

Brit Shields, Senior Lecturer in Bioengineering, has brought her expertise in the history and sociology of science to her leading role in developing and improving the ethics curriculum for all students in the School of Engineering and Applied Science. Most recently, this includes adapting the core ethics engineering ethics course “Technological Innovation and Civil Discourse in a Dynamic World” (EAS 204) for the Stavros Niarchos Foundation (SNF) Paideia Program. SNF Paideia courses, open to all Penn undergraduates, “integrate students’ personal, professional, and civic development […] focus[ing] on dialogue, wellness, service, and citizenship from different disciplinary and interdisciplinary perspectives.” A recent SNF Paideia blog post goes into detail about the changes made by Shields and co-instructor Christopher Yoo, John H. Chestnut Professor of Law, Communication, and Computer and Information Science, to suit the SNF Paideia Program, including its “explicit focus on civil discourse and technology.” According to Shields:

“I really wanted to break down the false dichotomy between technological expertise or humanities training for the students and open up the opportunity for Engineering students to consider themselves to have an important role, not just creating technological systems but also being important participants in civil discourse.”

Michelle Johnson, Ph.D.

The course also includes guest lectures by Penn faculty, including Michelle Johnson, Associate Professor in Bioengineering and Physical Medicine and Rehabilitation, and students learn to analyze how guest lecturers communicate their research to the public, for example, in the case of Johnson, in the form of a TED Talk and scholarly articles: “Through her TedTalk, journal articles and visit to the class, Michelle Johnson demonstrates how researchers are attuned to the specific preferences of the rehabilitative robots they are creating for patients…engaged scholarship at its finest.”

Read “Educating the Next Generation of Civically Engaged Technologists” in SNF Paideia Perspectives.

2021 Graduate Research Fellowships for Bioengineering Students

We are very pleased to announce that ten current and future graduate students in the Department of Bioengineering have received 2021 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. Further information about the program can be found on the NSF website. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of 2021 recipients and descriptions of their research.

Current Students:

Puneeth Guruprasad

Puneeth Guruprasad is a Ph.D. student in the lab of Marco Ruella, Assistant Professor of Medicine in the Division of Hematology/Oncology and the Center for Cellular Immunotherapies at the Perelman School of Medicine. His work applies next generation sequencing methods to characterize tumors and study the genetic basis of resistance to cancer immunotherapy, namely chimeric antigen receptor (CAR) T cell therapy.

Gabrielle Ho

Gabrielle (Gabby) Ho is a Ph.D. student in the lab of Brian Chow, Associate Professor in Bioengineering. She works on design strategies for engineering near-infrared fluorescent proteins and tools.

 

Abbas Idris

Abbas Idris is a Master’s student in the lab of Lukasz Bugaj, Assistant Professor in Bioengineering. His work focuses on using optogenetic tools to develop controllable protein assemblies for the study of cell signaling behaviors.

 

 

Incoming Students:

Additionally, seven NSF GRFP honorees from other institutions will be joining our department as Ph.D. students in the fall of 2021. We congratulate them as well and look forward to welcoming them to Penn:

Congratulations again to all our current and future graduate students on their amazing research!

“Science vs Science: The Contradictory Fight Over Whether Electromagnetic Hypersensitivity is Real”

cell phones
Kenneth R. Foster, Ph.D.

Electromagnetic fields are everywhere, and especially so in recent years. To most of us, those fields are undetectable. But a small number of people believe they have an actual allergy to electromagnetic fields. Ken Foster, a Professor Emeritus of Bioengineering, has heard these arguments before.  “Activists would point to all these biological effects studies and say, ‘There must be some hazard’; health agencies would have meticulous reviews of literature and not see much of a problem.”

Listen to the episode of The Pulse and read the full story at WHYY.

Originally posted on Penn Today.

Becoming a Bioengineer, Both at Home and On Campus

by Erica K. Brockmeier

The junior year BE-MAD lab series includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis (pictured here), and spectroscopy. (Image: Bioengineering Educational Lab)

While the majority of courses remained online this spring, a small number of lab-based undergraduate courses were able to resume limited in-person instruction. One course was BE 310, the second semester of the Bioengineering Modeling, Analysis, and Design lab sequence. Better known as BE-MAD, this junior-year bioengineering course was able to bring students back to the teaching lab safely this spring while adapting its curriculum to keep remote learners engaged with hands-on lab modules at home.

An Essential Step Towards Becoming a Bioengineer

After learning the basics of chemistry, physics, biology, and math during freshman year and studying bioengineering fundamentals throughout sophomore year, BE-MAD is designed to provide essential hands-on experience to bioengineering majors during their junior years. In BE-MAD, students integrate what they’ve learned so far in the classroom to addressing complex, real-world problems by breaking down the silos that exist across different STEM fields.

“Usually what we hear from students is that this BE 309/310 sequence is when they really feel like they are engineers,” says Brian Chow, one of the BE 310 instructors. “They can put what they learn in classes to work in some practical setting and applied context.”

BE-MAD is also an important course to prepare students for senior design and is designed to be a “safe space to fail,” allowing students to build confidence through trial and error within a supportive environment, explains Sevile G. Mannickarottu, director of the educational laboratories. “We’re trying to build skills needed for senior year as well as teaching students how to think critically about problems by pulling together the materials they’ve learned all in one place,” he says. “By senior year, we want them to, when presented with a problem, not be afraid.”

Adapting BE-MAD for Both Remote and Hybrid Instruction

Traditionally, the BE-MAD lab is taught in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary bioengineering teaching lab, and includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis, and spectroscopy. In the fall, the first lab in the series (BE-309) pivoted to remote learning using video tutorials of lab experiments and providing real data to students for analysis.

This spring, with more aspects of on-campus life able to reopen, the Educational Laboratory staff and BE-MAD instructors developed protocols in collaboration with David Meaney, Penn Engineering senior associate dean and an instructor for BE 309, and Penn’s Environmental Health and Radiation Safety office to safely reopen the teaching lab and Bio-MakerSpace for both BE-310 and for bioengineering senior design students.

The BE-MAD lab was also recreated on Gather.Town, an online video chat platform where students can speak with group members or instructors. Student groups also had their own tables where they could meet virtually to work on data analysis and lab report writing.

To continue to meet the needs of remote students, BE 310 instructor Lukasz Bugaj says that the curriculum was adapted to be two parallel courses—one that could be done entirely at home and the other in-person. The challenge was to adjust the content so that it could be completed either in-person or virtually, and could be switched from in-person to virtual at a moment’s notice because of COVID precautions, all while maximizing the hands-on experience, says Bugaj. “That’s a real credit to the lab staff of Sevile and Michael Patterson, who put a lot of work into revamping this entire class.”

Read the full story in Penn Today.

Claudia Loebel Appointed Assistant Professor at the University of Michigan

by Mahelet Asrat

Claudia Loebel, MD, PhD (Photo/Mel Evans)

The Department of Bioengineering is proud to congratulate Claudia Loebel, M.D., Ph.D. on her appointment as Assistant Professor in the Department of Materials Science and Engineering at the University of Michigan. Loebel is part of the University of Michigan’s Biological Sciences Scholar program, which recruits junior instructional faculty in major areas of biomedical investigation. Loebel’s appointment will begin in Fall 2021.

Loebel got her M.D. in 2011 from Martin-Luther University in Halle-Wittenberg, Germany and her Ph.D. in Health Sciences and Technology from ETH Zurich, Switzerland in 2016. There she worked under her advisors Professors Marcy Zenobi-Wong from ETH Zurich and David Eglin from AO Research Institute Davos. At Penn, she conducted postdoctoral research in the Polymeric Biomaterials Laboratory of Jason Burdick, Robert D. Bent Professor in Bioengineering, and as a Visiting Research Scholar in the Mauck Laboratory of the McKay Orthopaedic Research Laboratory in the Perelman School of Medicine.

Loebel was awarded a K99/R00 Pathway to Independence Award through the National Institutes of Health (NIH), which supports her remaining time as a postdoc as well as her time as an independent investigator at the University of Michigan. Loebel is excited about training the next generation of scientists and engineers and being part of their journey in becoming independent and diverse thinkers.

Loebel’s research area is inspired by the interface between material science and regenerative engineering and how it can address specific problems related to tissue development, repair, and regeneration. By developing mechanically and strucatally dynamic biomaterials, microfabrication, and matrix manipulation techniques her works aim to recreate complex cell-matrix interactions and model tissue morphogenesis and disease. The ultimate goal of her research is to use these engineered systems to develop and translate more effective therapeutic treatments for diseases such as fibrotic, inflammatory, and congenital disorders. Her lab’s work will initially focus on developing engineering lung alveolar organoids, aiming to build models of acute and chronic pulmonary diseases and for personalized medicine.

Loebel says, “I am grateful to all my Ph.D. and postdoc mentors for their continuous support and especially Jason who, over the last few years, has trained me in becoming an independent scientist and mentor. This transition would not have been possible without such a great mentor team behind me.”

Congratulations Dr. Loebel from everyone at Penn Bioengineering!

Bioengineering’s Organ-on-a-chip Spin-off is Growing

Andrei Georgescu (left) and Dan Huh are the co-founders of Vivodyne, a spin-off of Huh’s BIOLines lab.

Dan Huh, Associate Professor in the Department of Bioengineering, has been steadily growing a collection of organs-on-chips. These devices incorporate human cells into precisely engineered microfluidic channels that mimic an organ’s natural environment, providing a way to conduct experiments that would not otherwise be feasible.

Huh’s previous research has involved using a placenta-on-a-chip to study which drugs are able to reach a developing fetus; investigating microgravity’s effect on the immune system by sending one of his chips to the International Space Station; and testing treatments for dry eye disease using an eye-on-a-chip, complete with a mechanical blinking eyelid.

Now, he and his colleagues are taking this technology out of their lab and into industry with their company, Vivodyne.

Andrei Georgescu, Huh’s lab-member and co-founder of Vivodyne, recently spoke with Technical.ly Philly’s Paige Gross about the growth of their company.

Research into potential drugs is usually performed first on mice, and success is only found in a fraction of humans once implemented in clinical trials, Andrei Georgescu, cofounder and CEO of Vivodyne, told Technical.ly. The genetic makeup just isn’t similar enough. But technology that allows scientists to test therapies on lab-grown human organs called “organs on chip” is allowing for testing without human subjects.

The organs on chip allow for a drug to react to tissue in a more similar way to the body than it would in a petri dish, Georgescu said. Cells sense their environment very well, he added.

“We’re making the environment more complicated, making its spacial features complicated enough to match the native complexity of the organs,” he said. “When [cells] sense a softer environment, they start to behave more realistically. Their response to the drug is more realistic.”

Continue reading “This Penn-founded biotech company specializing in human ‘organs on chip’ raised $4M” at Technical.ly Philly. 

Originally posted in Penn Engineering Today.