Bioengineering Student Savan Patel Receives the 2022 C. William Hall Scholarship

Savan Patel

Savan Patel, a junior studying Bioengineering and Finance in the Jerome Fisher Management and Technology dual degree program, was selected as the recipient of the 2022 C. William Hall Scholarship from the Society for Biomaterials. The C. William Hall Scholarship is named in honor of the Society for Biomaterials’ first president and is awarded annually “to a junior or senior undergraduate pursuing a bachelor’s degree in bioengineering or a related discipline focusing on biomaterials.” As this year’s recipient, Savan will receive complimentary membership to the Society and will have expenses paid to the Society’s annual meeting being held April 27-30, 2022 in Baltimore, Maryland.

Savan is currently a member of the lab of Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering. Savan’s research interests lie in the interface of drug delivery and immunoengineering with a particular focus on T cell delivery. His current project involves the use of modified cholesterol molecules to improve the delivery of nucleic acids (i.e., mRNA) to cell populations using lipid nanoparticles.

Lipid nanoparticles (LNPs) are a clinically proven delivery platform for nucleic acid therapeutics. One drawback of these particles is their high cellular recycling rate. Savan and the members of the Mitchell lab are working to reduce this recycling by leveraging cellular processes and incorporating modified molecules into our lipid nanoparticle formulations. The focus of Savan’s project is on modifying cholesterol, a molecule that is important to both our LNP formulations and cell membranes. The goal is to generate a more potent delivery platform to improve current therapeutics.

Following graduation, Savan intends to pursue a Ph.D. in Bioengineering.

Ossum Technologies Wins 2022 Y-Prize with Tool for Stabilizing Fractures

by Ebonee Johnson

Cerclage wire is used to stabilize pieces of fractured bone; the OsPass aims to make it easier for surgeons to put that wire into place.

The Y-Prize, a student startup competition based on technologies developed at Penn Engineering, is hosted by the Wharton School’s Mack Institute for Innovation Management, Penn Wharton Entrepreneurship and the Penn Center for Innovation each year. The team with the best pitch takes home $10,000 in investment funding.

This year’s winning team was Ossum Technologies, composed of Ananya Dewan, Hoang Le, Shiva Teerdhala, all students in the Vagelos Life Sciences and Management Program, Bioengineering major Karan Shah and Savan Patel, a student in the Jerome Fisher Program for Management & Technology.

The team utilized the steerable needle technology developed by Mark Yim, Asa Whitney Professor of Mechanical Engineering and Applied Mechanics, and colleagues. Yim’s device is a flexible needle that can be guided through soft materials with simple handheld controls, enabling users to pinpoint hard-to-reach areas that might otherwise require more complicated tools or robotic assistance.

Read the full story in Penn Engineering Today.

Penn Bioengineering Student Laila Barakat Norford Named Goldwater Scholar

Laila Barakat Norford (Class of 2023)

Five University of Pennsylvania undergraduates have received 2022 Goldwater Scholarships, including Laila Barakat Norford, a third year Bioengineering major from Wayne, Pennsylvania. Goldwater Scholarships are awarded to sophomores or juniors planning research careers in mathematics, the natural sciences, or engineering.

She is among the 417 students named 2022 Goldwater Scholars from the 1,242 students nominated by 433 academic institutions in the United States, according to the Barry Goldwater Scholarship & Excellence in Education Foundation. Each scholarship provides as much as $7,500 each year for as many as two years of undergraduate study.

Penn has produced 23 Goldwater Scholars in the past seven years and a total of 55 since Congress established the scholarship in 1986.

Laila Barakat Norford is majoring in bioengineering with minors in computer science and bioethics in Penn Engineering. As a Rachleff Scholar, Norford has been engaged in systems biology research since her first year. Her current research uses machine learning to predict cell types in intestinal organoids from live-cell images, enabling the mechanisms of development and disease to be characterized in detail. At Penn, she is an Orientation Peer Advisor, a volunteer with Advancing Women in Engineering and the Penn Society of Women Engineers, and a teaching assistant for introductory computer science. She is secretary of the Penn Band, plays the clarinet, and is a member of the Band’s Fanfare Honor Society for service and leadership. Norford registers voters with Penn Leads the Vote and canvasses for state government candidates. She is also involved in Penn’s LGBTQ+ community as a member of PennAces. Norford plans to pursue a Ph.D. in computational biology, aspiring to build computational tools to address understudied diseases and health disparities.

The students applied for the Goldwater Scholarship with assistance from Penn’s Center for Undergraduate Research and Fellowships.

Read about all five 2022 Penn Goldwater Scholars in Penn Today.

Ossum Technologies Wins 2022 Y-Prize

Team Ossum Technologies

Ossum Technologies, a team of Penn undergraduates including several Bioengineering majors, has won the 2022 Y-Prize Competition. The annual Y-Prize Competition, which includes a $10,000 award, is sponsored by Penn Engineering, the William and Phyllis Mack Institute for Innovation Management at the Wharton School, the Venture Lab, and the Penn Center for Innovation, “challenges students to discover the hidden potential in Penn research” by taking technology from the lab to the marketplace.

Traditional hook versus OsPass

Team Ossum is comprosed of Ananya Dewan (Vagelos LSM), Hoang Le (Vagelos LSM), Shiva Teerdhala (Vagelos LSM), Karan Shah (SEAS), and Savan Patel (M&T). Karan and Savan are both bioengineering majors. Their winning pitch to a panel of expert judges proposed “a commercial application to remove obstacles to safe cerclage use in orthopedic fracture fixation with Penn’s steerable needle technology.” Initial work for Ossum’s device, OsPass, was done in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab and interdisciplinary makerspace of the Department of Bioengineering which is open to any Penn students campus-wide.

Team Steed, who proposed “an application to make breast biopsies less painful and damaging,” placed among the competition finalists and included bioengineering majors Farhaanah Mohideen, Ananyaa Kumar, and Kristina Khaw.

Read the full announcement on the Mack Institute website.

Herman P. Schwan Distinguished Lecture: “Nucleoside-modified mRNA-LNP therapeutics” (Drew Weissman, Perelman School of Medicine)

We hope you will join us for the Spring 2022 Herman P. Schwan Distinguished Lecture by Dr. Drew Weissman, hosted by the Department of Bioengineering.

Date: Tuesday, March 29, 2022
Time: 3:30-5:00 PM
Location: Bodek Lounge, Houston Hall
Reception to follow
Zoom Link
Password: schwan22

Drew Weissman, M.D., Ph.D.

Speaker: Drew Weissman, M.D., Ph.D.
Roberts Family Professor in Vaccine Research, Department of Medicine
Perelman School of Medicine
University of Pennsylvania

Abstract:

Vaccines prevent 4-5 million deaths a year making them the principal tool of medical intervention worldwide. Nucleoside-modified mRNA was developed over 15 years ago and has become the darling of the COVID-19 pandemic with the first 2 FDA approved vaccines based on it. These vaccines show greater than 90% efficacy and outstanding safety in clinical use. The mechanism for the outstanding immune response induction are the prolonged production of antigen leading to continuous loading of germinal centers and the adjuvant effect of the LNPs, which selectively stimulate T follicular helper cells that drive germinal center responses. Vaccine against many pathogens, including HIV, HCV, HSV2, CMV, universal influenza, coronavirus variants, pancoronavirus, nipah, norovirus, malaria, TB, and many others are currently in development. Nucleoside-modified mRNA is also being developed for therapeutic protein delivery. Clinical trials with mRNA encoded monoclonal antibodies are underway and many other therapeutic or genetic deficient proteins are being developed. Finally, nucleoside-modified mRNA-LNPs are being developed and used for gene therapy. Cas9 knockout to treat transthyretin amyloidosis has shown success in phase 1 trials. We have developed the ability to target specific cells and organs, including lung, brain, heart, CD4+ cells, all T cells, and bone marrow stem cells, with LNPs allowing specific delivery of gene editing and insertion systems to treat diseases such as sickle cell anemia, Nucleoside-modified mRNA will have an enormous potential in the development of new medical therapies.

Bio:

Drew Weissman, M.D., Ph.D. is a professor of Medicine at the Perelman School of Medicine, University of Pennsylvania. He received his graduate degrees from Boston University School of Medicine. Dr. Weissman, in collaboration with Dr. Katalin Karikó, discovered the ability of modified nucleosides in RNA to suppress activation of innate immune sensors and increase the translation of mRNA containing certain modified nucleosides. The nucleoside-modified mRNA-lipid nanoparticle vaccine platform Dr. Weissman’s lab created is used in the first 2 approved COVID-19 vaccines by Pfizer/BioNTech and Moderna. They continue to develop other vaccines that induce potent antibody and T cell responses with mRNA–based vaccines. Dr. Weissman’s lab also develops methods to replace genetically deficient proteins, edit the genome, and specifically target cells and organs with mRNA-LNPs, including lung, heart, brain, CD4+ cells, all T cells, and bone marrow stem cells.

About the Schwan Lecture:

The Herman P. Schwan Distinguished Lecture is in honor of one of the founding members of the Department of Bioengineering, who emigrated from Germany after World War II and helped create the field of bioengineering in the US. It recognizes people with a similar transformative impact on the field of bioengineering.

Bionegineering Spin-off Vivodyne on Fast Company’s ‘Most Innovative’ List

Andrei Georgescu (left) and Dan Huh developed several organ-on-a-chip platforms in Huh’s lab. Their spin-off company, Vivodyne, aims to use the technology as a scalable alternative to animal testing in the pharmaceutical industry.

With Vivodyne, Associate Professor in the Department of Bioengineering Dan Huh is translating the organs-on-chips technology into a promising industry venture. Using microfluidic structures that mimic aspects of human physiology, organs-on-chips allow scientists to test therapies on lab-grown human cells. Vivodyne specifically focuses on designing organs-on-chips to create a scalable alternative for pharmaceutical drug testing on animals.

Last year, the company raised $4 million dollars in seed money. This year, it’s topping influential lists of small companies making big impacts.

Fast Company now lists it as one of “the 10 most innovative companies with fewer than 10 employees,”  saying “Vivodyne is helping major pharmaceutical companies like GlaxoSmithKline quickly adopt viable alternatives for testing drugs on monkeys.”

Vivodyne, launched in 2021, has created a platform that allows fully automated, complex studies at a far larger scale and lower cost than would be possible with manual experimentation, so pharmaceutical companies can actually test lab-made organs instead of animals in their drug-development processes. When done by hand, only 20 to 40 living tissue samples can be managed in parallel; Vivodyne’s instrument can cultivate, dose, and image more than 2,000 living tissues at once. The company, which raised $4 million in seed funding last year, says its instruments currently play pivotal roles in clinical drug testing for respiratory diseases, cancer treatment, vaccine development, diabetes therapies, and maternal medicine. GlaxoSmithKline, one of Vivodyne’s clients, estimates that for some projects the lab-grown tissues may displace as much as 80% of its animal testing. The company’s ultimate goal? “To supplant the vast majority of animal testing within the next decade,” says CEO Andrei Georgescu.

Continue reading “The 10 most innovative companies with fewer than 10 employees” at Fast Company.

Originally posted in Penn Engineering today.

Konrad Kording Appointed Co-Director the CIFAR Learning in Machines & Brains Program

Konrad Kording, PhD (Photo by Eric Sucar)

Konrad Kording, Nathan Francis Mossell University Professor in Bioengineering, Neuroscience, and Computer and Information Sciences, was appointed the Co-Director of the CIFAR Program in Learning in Machines & Brains. The appointment will start April 1, 2022.

CIFAR is a global research organization that convenes extraordinary minds to address the most important questions facing science and humanity. CIFAR was founded in 1982 and now includes over 400 interdisciplinary fellows and scholars, representing over 130 institutions and 22 countries. CIFAR supports research at all levels of development in areas ranging from Artificial Intelligence and child and brain development, to astrophysics and quantum computing. The program in Learning in Machines & Brains brings together international scientists to examine “how artificial neural networks could be inspired by the human brain, and developing the powerful technique of deep learning.” Scientists, industry experts, and policymakers in the program are working to understand the computational and mathematical principles behind learning, whether in brains or in machines, in order to understand human intelligence and improve the engineering of machine learning. As Co-Director, Kording will oversee the collective intellectual development of the LMB program which includes over 30 Fellows, Advisors, and Global Scholars. The program is also co-directed by Yoshua Benigo, the Canada CIFAR AI Chair and Professor in Computer Science and Operations Research at Université de Montréal.

Kording, a Penn Integrates Knowledge (PIK) Professor, was previously named an associate fellow of CIFAR in 2017. Kording’s groundbreaking interdisciplinary research uses data science to advance a broad range of topics that include understanding brain function, improving personalized medicine, collaborating with clinicians to diagnose diseases based on mobile phone data and even understanding the careers of professors. Across many areas of biomedical research, his group analyzes large datasets to test new models and thus get closer to an understanding of complex problems in bioengineering, neuroscience and beyond.

Visit Kording’s lab website and CIFAR profile page to learn more about his work in neuroscience, data science, and deep learning.

Decade-long Remission After CAR T Cell Therapy

Bill Ludwig, left, was the first patient to receive CAR T cells as part of clinical trials at Abramson Cancer Center. Carl June, right, has played a pioneering roll in the therapeutic use of CAR T cells. (Image: Penn Medicine)

Carl H. June, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine at Penn Medicine, director of the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy, and member of the Penn Bioengineering Graduate Group at the University of Pennsylvania, has led a new analytical study published in Nature that explains the longest persistence of CAR T cell therapy recorded to date against chronic lymphocytic leukemia (CLL), and shows that the CAR T cells remained detectable at least a decade after infusion, with sustained remission in both patients. June’s pioneering work in gene therapy led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating leukemia and transforming the fight against cancer. His lab develops new forms of T cell based therapies.

Read the story in Penn Today

Understanding Optimal Resource Allocation in the Brain

by Erica K. Brockmeier

A processed image representative of the types of images used in this study. Natural landscapes were transformed into binary images, ones made of black and white pixels, that were decomposed into different textures defined by specific statistics. (Image: Eugenio Piasini)

The human brain uses more energy than any other organ in the body, requiring as much as 20% of the body’s total energy. While this may sound like a lot, the amount of energy would be even higher if the brain were not equipped with an efficient way to represent only the most essential information within the vast, constant stream of stimuli taken in by the five senses. The hypothesis for how this works, known as efficient coding, was first proposed in the 1960s by vision scientist Horace Barlow.

Now, new research from the Scuola Internazionale Superiore di Studi Avanzati (SISSA) and the University of Pennsylvania provides evidence of efficient visual information coding in the rodent brain, adding support to this theory and its role in sensory perception. Published in eLife, these results also pave the way for experiments that can help understand how the brain works and can aid in developing novel artificial intelligence (AI) systems based on similar principles.

According to information theory—the study of how information is quantified, stored, and communicated—an efficient sensory system should only allocate resources to how it represents, or encodes, the features of the environment that are the most informative. For visual information, this means encoding only the most useful features that our eyes detect while surveying the world around us.

Vijay Balasubramanian, a computational neuroscientist at Penn, has been working on this topic for the past decade. “We analyzed thousands of images of natural landscapes by transforming them into binary images, made up of black and white pixels, and decomposing them into different textures defined by specific statistics,” he says. “We noticed that different kinds of textures have different variability in nature, and human subjects are better at recognizing those which vary the most. It is as if our brains assign resources where they are most necessary.”

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania. He is a member of the Penn Bioengineering Graduate Group.

Jennifer Phillips-Cremins Wins ISSCR Dr. Susan Lim Award for Outstanding Young Investigator

Jennifer Phillips-Cremins, Ph.D.

Jennifer E. Phillips-Cremins, Associate Professor and Dean’s Faculty Fellow in Bioengineering and Genetics, has been awarded the 2022 Dr. Susan Lim Award for Outstanding Young Investigator by the International Society for Stem Cell Research (ISSCR), the preeminent, global organization dedicated to stem cells research.

This award recognizes the exceptional achievements of an investigator in the early part of his or her independent career in stem cell research. Cremins works in the field of epigenetics, and is a pioneer in understanding how chromatin,  the substance within a chromosome, works:

“Dr. Phillips-Cremins is a gifted researcher with diverse skills across cell, molecular, and computational biology. She is a shining star in the stem cell field who has already made landmark contributions in bringing long-range chromatin folding mechanisms to stem cell research. In addition to her skills as an outstanding researcher,” ISSCR President Melissa Little, Ph.D., said. “She has flourished as an independent investigator, providing the stem cell field with unique and creative approaches that have facilitated conceptual leaps in our understanding of long-range spatial regulation of stem cell fate. Congratulations, Jennifer, on this prestigious honor.”

Cremins was awarded a NIH Director’s Pioneer Award in 2021 and a Chan Zuckerberg Initiative (CZI) grant as part of the CZI Collaborative Pairs Pilot Project in 2020. The long-term goal of her lab is to understand the mechanisms by which chromatin architecture governs genome function. The ISSCR will recognize Cremins and her research in a plenary session during the ISSCR annual meeting on June 15.

Read the full press release on the ISSCR website.