Brian Litt, Professor in Bioengineering in Penn Engineering and in Neurology in the Perelman School of Medicine, spoke to Neurology Today about the advances in technology for detecting and forecasting seizures.
The Litt Lab for Translational Neuroengineering translates neuroengineering research directly into patient care, focusing on epilepsy and a variety of research initiatives and clinical applications.
“Dr. Litt’s group is working with one of a number of startups developing ‘dry’ electrode headsets for home EEG monitoring. ‘They are still experimental, but they’re getting better, and I’m really optimistic about the possibilities there.'”
Brain development does not occur uniformly across the brain, but follows a newly identified developmental sequence, according to a new Penn Medicine study. Brain regions that support cognitive, social, and emotional functions appear to remain malleable—or capable of changing, adapting, and remodeling—longer than other brain regions, rendering youth sensitive to socioeconomic environments through adolescence. The findings are published in Nature Neuroscience.
Researchers charted how developmental processes unfold across the human brain from the ages of 8 to 23 years old through magnetic resonance imaging (MRI). The findings indicate a new approach to understanding the order in which individual brain regions show reductions in plasticity during development.
Brain plasticity refers to the capacity for neural circuits—connections and pathways in the brain for thought, emotion, and movement—to change or reorganize in response to internal biological signals or the external environment. While it is generally understood that children have higher brain plasticity than adults, this study provides new insights into where and when reductions in plasticity occur in the brain throughout childhood and adolescence.
The findings reveal that reductions in brain plasticity occur earliest in “sensory-motor” regions, such as visual and auditory regions, and occur later in “associative” regions, such as those involved in higher-order thinking (problem solving and social learning). As a result, brain regions that support executive, social, and emotional functions appear to be particularly malleable and responsive to the environment during early adolescence, as plasticity occurs later in development.
“Studying brain development in the living human brain is challenging. A lot of neuroscientists’ understanding about brain plasticity during development actually comes from studies conducted with rodents. But rodent brains do not have many of what we refer to as the association regions of the human brain, so we know less about how these important areas develop,” says corresponding author Theodore D. Satterthwaite,the McLure Associate Professor of Psychiatry in the Perelman School of Medicine, and director of the Penn Lifespan Informatics and Neuroimaging Center (PennLINC).
Technical.ly Philly journalist Sarah Huffman recently paid another visit to Penn Bioengineering’s George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, this time for the 2023 Senior Design Expo. Following the annual Senior Design presentations held in the Singh Center for Nanotechnology, in which graduating fourth-year undergraduates in Bioengineering presented their final capstone projects, the Expo offered an opportunity for the teams to do live demonstrations (or demos) for the department’s internal competition judges and the wider BE community.
“In the course of the day, students presented the challenge they were aiming to solve and the technical details of their solution. After, demonstrations sought to find if the devices really worked.
‘[It’s] looking at the device as a whole, because quite frankly, you can say whatever you want at a presentation, does it really work,’ said [BE Labs Director Sevile] Mannickarottu. ‘You can make it look pretty, “but does it work?” is the big question.'”
Daeyeon Lee, Professor and Evan C Thompson Term Chair for Excellence in Teaching in the Department of Chemical and Biomolecular Engineering and member of the Penn Bioengineering Graduate Group, is the recipient of two recent honors.
“Students who feel connected with instructors and among peers will invest more time, work harder, and retain information better, because they feel comfortable and safe being in the classroom and making space,” Lee said in his opening remarks. “So, there are clearly lots of positive benefits to having this connectedness among students in the classroom.”
Lee’s lecture, titled “(Re)connecting in the Classroom,” was inspired by the “Great Disengagement” referenced in an article published in The Chronicle of Higher Education last year. It portrayed students as more disconnected and uncertain as they re-entered the campus environment.
Read more about Lee’s “(Re)connecting in the Classroom” in Penn Today.
In addition, Lee has received the 2022 Outstanding Achievement Award in Nanoscience from the American Chemical Society (ACS).
The annual award recognizes exceptional achievements in nanoscience research and notable leadership in the area of colloidal nanoparticles and application. Lee was chosen from a large group of extraordinary nominees among the invited speakers, “for pioneering research in development of factory-on-a-chip and its application for large scale nanoparticle synthesis and functionalization.”
Two faculty affiliated with the Department of Bioengineering at the University of Pennsylvania have been elected to the American Academy of Arts & Sciences. They join nearly 270 new members honored in 2023, recognized for their excellence, innovation, leadership, and broad array of accomplishments.
Nader Engheta is the H. Nedwill Ramsey Professor, with affiliations in the departments of Electrical and Systems Engineering (primary appointment), Bioengineering (secondary appointment) and Materials Science and Engineering (secondary appointment) in the School of Engineering and Applied Science; and Physics and Astronomy (secondary appointment) in the School of Arts & Sciences. His current research activities span a broad range of areas including optics, photonics, metamaterials, electrodynamics, microwaves, nano-optics, graphene photonics, imaging and sensing inspired by eyes of animal species, microwave and optical antennas, and physics and engineering of fields and waves. He has received numerous awards for his research, including the 2023 Benjamin Franklin Medal in Electrical Engineering, the 2020 Isaac Newton Medal and Prize from the Institute of Physics (U.K.), the 2020 Max Born Award from OPTICA (formerly OSA), induction to the Canadian Academy of Engineering as an International Fellow (2019), U.S. National Academy of Inventors (2015), and the Ellis Island Medal of Honor from the Ellis Island Honors Society (2019). He joins four other Penn faculty elected to the Academy this year.
Read the announcement and the full list of Penn electees in Penn Today.
Susan Margulies, Professor in the Wallace H. Coulter Department of Biomedical Engineering in the College of Engineering at Georgia Tech, was also elected. Margulies is both Professor Emeritus in Penn Bioengineering and an alumna of the program, having earned her Ph.D. with the department in 1987. Margulies is an expert in pediatric traumatic brain injury and lung injury. She previously served as Chair of Biomedical Engineering at Georgia Tech/Emory University and in 2021 became the first biomedical engineer selected to lead the National Science Foundation’s (NSF) Directorate of Engineering.
Read the announcement of Margulies’ elected to the Academy at Georgia Tech.
A team of Penn Bioengineering Senior Design students was featured as the 3D print of the week by the Penn Biomedical Library’s Biomeditations blog.
Fourth-year undergraduate students Ella Atsavapranee, Jake Becker, Ruoming Fan, and Savan Patel created StablEyes, “a stabilization mount that provides fine, motorized control of the handheld OCT to improve ease of use for physicians and machine learning-based software to aid in diagnosis from retinal images.” The team made use of 3D printing services, laboratory space, and expertise across Penn’s campus to create their innovative design, including the Bollinger Digital Fabrication Lab in the Holman Biotech Commons, the Fisher Fine Arts Library, the Children’s Hospital of Philadelphia (CHOP), and the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka the Penn BE Labs).
Michael Magaraci, Research Scientist at Protein Evolution and alumnus of Penn Bioengineering, featured in CT Insider for the New Haven, CT startup’s quest to replace the global recycling system. The company, founded in 2021, is working on methods to eventually recycle polyester fabrics, rugs, and other materials that end up in landfills. Magaraci, who serves as director of platform engineering, earned a bachelor’s degree in Bioengineering and Economics in the Jerome Fisher Program in Management & Technology from Penn Engineering and the Wharton School of Business in 2013. He stayed with Penn Bioengineering for his doctoral research, completed in 2021. During his time at Penn, he worked as a Teaching Assistant and Laboratory Technician, advised Penn iGEM Teams, and served with Engineers Without Borders.
Joshua C. Doloff, Assistant Professor of Biomedical Engineering and Materials Science & Engineering at Johns Hopkins University, featured in The Jewish News Syndicate for his work on “Hope,” a new technology which offers pain- and injection-free treatment to people with Type 1 or “juvenile” diabetes. Doloff is an alumnus of Penn Bioengineering, Class of 2004:
“Doloff received his bachelor’s degree from the University of Pennsylvania and his graduate degrees from Boston University. In addition to his post in Johns Hopkins’ Department of Biomedical Engineering, he is a member of the Translational Tissue Engineering Center at Johns Hopkins University School of Medicine. His lab is interested in systems biology with an emphasis on engineering improved therapies in the fields of cancer, autoimmunity, transplantation medicine, including Type 1 diabetes and ophthalmology.”
The American Association for Cancer Research (AACR), the largest cancer research organization in the country and based in Philadelphia, will bestow its 2023 Award for Lifetime Achievement in Cancer Research to Carl June, Richard W. Vague Professor in Immunotherapy in the Department of Pathology and Laboratory Medicine at Penn Medicine. June is also Director of the Center for Cellular Immunotherapies, Director of the Parker Institute for Cancer Immunotherapy, and member of the Penn Bioengineering Graduate Group. He is recognized for his groundbreaking work in developing the first gene-editing cell therapy for cancer and for his pioneering work with CAR T cell therapy.
His research aims to combat global health threats such as COVID-19 and Alzheimer’s disease by better understanding how proteins function and malfunction, especially through new computational and experimental methods that map protein structures. This understanding of protein dynamics can lead to effective new treatments for even the most seemingly resistant diseases.
“Delivering the right treatment to the right person at the right time is vital to sustaining—and saving—lives,” Magill said. “Greg Bowman’s novel work holds enormous promise and potential to advance new forms of personalized medicine, an area of considerable strength for Penn. A gifted researcher and consummate collaborator, we are delighted to count him among our distinguished PIK University Professors.”
Bowman came to Penn from the Washington University School of Medicine’s Department of Biochemistry and Molecular Biophysics, where he served on the faculty since 2014. He previously completed a three-year postdoctoral fellowship at the University of California, Berkeley.
Bowman’s research utilizes high-performance supercomputers for simulations that can better explain how mutations and disease change a protein’s functions. These simulations are enabled in part through the innovative Folding@home project, which Bowman directs. Folding@home empowers anyone with a computer to run simulations alongside a consortium of universities, with more than 200,000 participants worldwide.
His research has been supported by the National Science Foundation, National Institutes of Health, National Institute on Aging, and Packard Foundation, among others, and he has received a CAREER Award from the NSF, Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and Thomas Kuhn Paradigm Shift Award from the American Chemical Society. He received a Ph.D. in biophysics from Stanford University and a B.S. (summa cum laude) in computer science, with a minor in biomedical engineering, from Cornell University.
“Greg Bowman’s highly innovative work,” Winkelstein said, “exemplifies the power of our interdisciplinary mission at Penn. He brings together supercomputers, biophysics, and biochemistry to make a vital impact on public health. This brilliant fusion of methods—in the service of improving people’s lives around the world—will be a tremendous model for the research of our faculty, students, and postdocs in the years ahead.”
The Penn Integrates Knowledge program is a University-wide initiative to recruit exceptional faculty members whose research and teaching exemplify the integration of knowledge across disciplines and who are appointed in at least two schools at Penn.
The Louis Heyman University Professorship is a gift of Stephen J. Heyman, a 1959 graduate of the Wharton School, and his wife, Barbara Heyman, in honor of Stephen Heyman’s uncle. Stephen Heyman is a University Emeritus Trustee and member of the School of Nursing Board of Advisors. He is Managing Partner at Nadel and Gussman LLC in Tulsa, Oklahoma.