2024 Graduate Research Fellowships for Penn Bioengineering Students

NSF Logo

Congratulations to the fifteen Bioengineering students to receive 2024 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The recipients were selected from a highly-competitive, nationwide pool. Further information about the program can be found on the NSF website.

The following Ph.D. students in Bioengineering received awards:

Anushka Agrawal – Mitchell Lab

Amanda Bluem  – incoming student

Stephen Ching – incoming student, Research Staff in the Hast Lab

Ana Crysler – incoming student, de la Fuente Lab

Ellie Feng – incoming student

Stephen Lee – Alvarez lab

Jenlu Pagnotta – incoming student

Schyler Rowland – incoming student

Rayna L. Schoenberger – incoming student, Gottardi Lab

Eva Utke – incoming student

Delaney Wilde – Bugaj Lab

The following BE undergraduate students also received awards and will be pursuing graduate study:

Aditi Ghalsasi – Recent M&T program graduate (Bioengineering and Finance), Mitchell Lab

Ryan Lim – Recent B.S.E. graduate, incoming Ph.D. student at Harvard-MIT

Angela Song – Recent B.S.E. graduate, Wallace Lab

Dorix Xu – Recent B.S.E. graduate, Center for Neuroengineering and Therapeutics

The following students received honorable mention:

Ekta Singh – Recent Master’s in BE graduate, incoming Ph.D. student, Witschey Lab

Ksenija Tasich – incoming Ph.D. student

Emma Warrner – incoming Ph.D. student

Riccardo Gottardi Receives BMES Rising Star Award

Riccardo Gottardi, Ph.D.

Riccardo Gottardi, Assistant Professor in Pediatrics and in Bioengineering and leader of the Bioengineering and Biomaterials Laboratory at the Children’s Hospital of Philadelphia (CHOP), received the Rising Star Award from the Biomedical Engineering Society-Cellular and Molecular Bioengineering (BMES-CMBE). The Rising Star Award recognizes a BMES-CMBE member who is at the early independent career stage and has made an outstanding impact on the field of cellular and molecular bioengineering. Awardees will give an oral presentation on their research at the BMES-CMBE conference in Puerto Rico in January and be recognized at the conference Gala dinner.

Dr. Gottardi’s research focuses on engineering solutions for pediatric health, primarily for airway disorders. He has previously received awards for work to create a biomaterial patch to repair the tympanic membrane and for work to develop cartilage implants to treat severe subglottic stenosis. He received grant support from the National Institutes of Health to further his work in subglottic stenosis.

This story originally appeared in the CHOP Cornerstone Blog.

Riccardo Gottardi Recognized for Airway Research

Matthew Aronson (left), Ph.D. student in Bioengineering, and Riccardo Gottardi, Assistant Proessor in Bioengineering and Pediatrics.

Riccardo Gottardi, Assistant Professor in Pediatrics in the Perelman School of Medicine and in Bioengineering in the School of Engineering and Applied Science, has been named a “Young Innovator of Cellular and Molecular Bioengineering” by Cellular and Molecular Bioengineering, the official journal of the Biomedical Engineering Society (BMES). Gottardi is Chief Scientist in the Pediatric Airway Frontier Program at the Children’s Hospital of Philadelphia (CHOP). He leads the Bioengineering and Biomaterials (Bio2) Lab, and was recognized here for his research to prevent subglottic stenosis in children.

Gottardi’s work in subglottic stensosis, a severe narrowing of the airway in response to intubation, was recently profiled in CHOP’s Cornerstone Blog. CHOP’s award press release describes Gottardi’s innovative treatment:

“Prior studies by Dr. Gottardi’s lab used in vitro models to demonstrate that incorporating AMPs into polymer-coated tubes can inhibit bacterial growth and modulate the upper-airway microbiome. In a recent study in Cellular and Molecular Engineering, led by [Bioengineering] PhD student Matthew Aronson of the Gottardi Lab, the researchers went a step further and used both ex vivo and in vivo models to show how their patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively targeted the local airway microbiota, reducing inflammation and resolving stenosis.

‘I am honored to be recognized by Cellular and Molecular Engineering for this exciting and notable award,” Dr. Gottardi said. “We are hopeful that our airway innovation will show similar success in human trials, so that we can improve outcomes for intubated pediatric patients.’”

Read CHOP’s full announcement of the award here.

Penn Bioengineers Create Non-invasive Cartilage Implants for Pediatric Subglottic Stenosis

by Emily Shafer

Paul Gehret and Riccardo Gottardi accept the International Society for Biofabrication New Investigator Award onstage at the international conference.
Paul Gehret (left) and Riccardo Gottardi, PhD, at Biofabrication 2022, the International Conference on Biofabrication.

Bioengineering researchers at Children’s Hospital of Philadelphia are developing a less invasive and quicker method to create cartilage implants as an alternative to the current treatment for severe subglottic stenosis, which occurs in 10 percent of premature infants in the U.S.

Subglottic stenosis is a narrowing of the airway, in response to intubation. Severe cases require laryngotracheal reconstruction that involves grafting cartilage from the rib cage with an invasive surgery. With grant support from the National Institutes of Health, Riccardo Gottardi, PhD, who leads the Bioengineering and Biomaterials (Bio2) Lab at CHOP, is refining a technology called Meniscal Decellularized scaffold (MEND). Working with a porcine model meniscus, the researchers remove blood vessels and elastin fibers to create pathways that allow for recellularization. Dr. Gottardi and his team then harvest ear cartilage progenitor cells (CPCs) with a minimally invasive biopsy, combine them with MEND, and create cartilage implants that could be a substitute for the standard laryngotracheal reconstruction.

This work and similar work on the tympanic membrane earned Paul Gehret, a doctoral student in the Gottardi Lab, the International Society for Biofabrication New Investigator Award and the Wake Forest Institute for Regenerative Medicine Young Investigator Award.  Gehret and Dr. Gottardi accepted the awards at Biofabrication 2022, the International Conference on Biofabrication, in Pisa Italy.

While laryngotracheal reconstruction in the adult population has a success rate of up to 96%, success rates in children range from 75% to 85%, and children often require revision surgery due to a high incidence of restenosis. The procedure also involves major surgery to remove cartilage from the rib cage, which is more difficult for childrens’ smaller bodies.

“Luckily not many children suffer from severe subglottic stenosis, but for those who do, it is really serious,” said Dr. Gottardi, who also is assistant professor in the Department of Pediatrics and Department of Bioengineering at CHOP and the University of Pennsylvania. “With our procedure, we have an easily accessible source for the cartilage and the cells, providing a straightforward and noninvasive treatment option with much potential.”

Read the full story in CHOP’s Cornerstone Blog.

Riccardo Gottardi is an Assistant Professor in the Department of Pediatrics, Division of Pulmonary Medicine in the Perelman School of Medicine and in the Department of Bioengineering in the School of Engineering and Applied Science. He also holds an appointment in the Children’s Hospital of Philadelphia (CHOP).

Paul Gehret is a Ph.D. student in Bioengineering, an Ashton Fellow and a NSF Fellow. His research focuses on leveraging decellularized cartilage scaffolds and novel cell sources to reconstruct the pediatric airway.

2023 Graduate Research Fellowships for Bioengineering Students

Congratulations to the fourteen Bioengineering students to receive 2023  National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The recipients honorees were selected from a highly-competitive, nationwide pool. Further information about the program can be found on the NSF website.

Carlos Armando Aguila, Ph.D. student in Bioengineering, is a member of the Center of Neuroengineering and Therapeutics, advised by Erin Conrad, Assistant Professor in Neurology, and Brian Litt, Professor in Bioengineering and Neurology. His research focuses on analyzing electroencephalogram (EEG) signals to better understand epilepsy.

Joseph Lance Victoria Casila is a Ph.D. student in Bioengineering in the lab of Riccardo Gottardi, Assistant Professor in Pediatrics and Bioengineering. His research focuses on probing environmental factors that influence stem cell differentiation towards chondrogenesis for cartilage engineering and regeneration.

Trevor Chan is a Ph.D. student in Bioengineering in the lab of Felix Wehrli, Professor of Radiologic Science. His research is in developing computational methods for medical image refinement and analysis. Two ongoing projects are: self-supervised methods for CT super-resolution and assessment of osteoporosis, and semi-supervised segmentation of 3D and 4D echocardiograms for surgical correction of congenital heart-valve defects.

Rakan El-Mayta is an incoming Ph.D. student in the lab of Drew Weissman, Roberts Family Professor in Vaccine Research. Rakan studies messenger RNA-lipid nanoparticle vaccines for the treatment and prevention of infectious diseases. Prior to starting in the Bioengineering graduate program, he worked as a Research Assistant in Weissman lab and in the lab of Michael Mitchell, Associate Professor in Bioengineering.

Austin Jenk is a Ph.D. student in the lab of Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering. Austin aims to develop early intervention, intra-articular therapeutics to combat the onset of post-traumatic osteoarthritis following acute joint injuries. His work focuses on developing a therapeutic that can be employed not only in conventional healthcare settings, but also emergency and battlefield medicine.

Jiageng Liu is a Ph.D. student in the lab of Alex Hughes, Assistant Professor in Bioengineering. His work aims to precisely control the bio-physical/chemical properties of iPSC-derived organoids with advanced synthetic biology approaches to create functional replacement renal tissues.

Alexandra Neeser is a Ph.D. student in the lab of Leyuan Ma, Assistant Professor of Pathology and Laboratory Medicine. Her research focuses on solid tumor microenvironment delivery of therapeutics.

 

William Karl Selboe Ojemann, a Ph.D. Student in Bioengineering, is a member of the Center for Neuroengineering and Therapeutics directed by Brian Litt, Professor in Bioengineering and Neurology. His research is focused on developing improved neurostimulation therapies for epilepsy and other neurological disorders.

Savan Patel (BSE Class of 2023) conducted research in the lab of Michael Mitchell, Associate Professor in Bioengineering, where he worked to develop lipid nanoparticle formulations for immunotherapy and extrahepatic delivery of mRNA. He will be joining the Harvard-MIT HST MEMP Ph.D. program in the fall of 2023.

David E. Reynolds, a Ph.D. student in Bioengineering, is a member of the lab of Jina Ko, Assistant Professor in Bioengineering and Pathology and Laboratory Medicine. His research focuses on developing novel and translatable technologies to address currently intractable diagnostic challenges for precision medicine.

Andre Roots is a Ph.D. student in the lab of Christopher Madl, Assistant Professor in Materials Science and Engineering. His research focuses on the use of protein engineering techniques and an optimized 3D human skeletal muscle microtissue platform to study the effects of biophysical material properties on cells.

Emily Sharp, a second year Ph.D. student in Bioengineering, is a member of the lab of Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering, part of the McKay Orthopaedic Research Laboratories. Her research focuses on designing multi-functional biomaterials to enhance tissue repair, specifically intervertebral disc repair following herniation and discectomy.

Nat Thurlow is a Ph.D. student in the lab of Louis J. Soslowsky, Fairhill Professor in Orthopedic Surgery and Bioengineering. Their current work focuses on delineating the roles of collagens V and XI in tendon mechanics, fibril structure, and gene expression during tendon development and healing.

Maggie Wagner, Ph.D. student in Bioengineering, is a member in the labs of Josh Baxter, Assistant Professor of Orthopaedic Surgery, and Flavia Vitale, Assistant Professor in Neurology and Bioengineering. Her research focuses on the development of novel sensors to record and monitor muscle neuromechanics.

More 2023 SFB STAR Awards for Penn Bioengineering Students

Following up on our recent announcement of two Student Travel Achievement Recognition (STAR) Awards from the Society for Biomaterials (SFB) for members of the lab of Mike Mitchell, we are pleased to announce that two more Penn Bioengineering students also received STAR Awards!

Matthew Aronson and Alexandra Dumas are both members of the lab of Riccardo Gottardi, Assistant Professor in Pediatrics in the Perelman School of Medicine and in Bioengineering in the School of Engineering and Applied Science. Both presented their work at the recent 2023 SFB Annual Meeting and Exposition in San Diego, California in April 2023 and were honored with STAR Awards for their research.

The Gottardi Bioengineering and Biomaterials Laboratory studies treatment and function restoration for children with otolaryngologic disorders through the Children’s Hospital of Philadelphia  (CHOP) in the Division of Otolaryngology.

Matthew Aronson

Matthew Aronson is a third-year Ph.D. student in Bioengineering, an Ashton Fellow, and a NSF Fellow. His doctoral research focuses on studying pediatric airway diseases and disorders. More specifically, he is interested in how bacteria of the upper airway are responsible for the development and progression the disease subglottic stenosis, narrowing of the airway. In addition to understanding this devastating disease in the context of pediatric patients at CHOP, he also designed a novel drug-eluting endotracheal tube to deliver a selective antimicrobial peptide to function as a treatment modality for the prevention of the disease.

Alexandra Dumas

Alexandra Dumas is a rising fourth-year undergraduate in Bioengineering from Durban, South Africa. She is a PURM Fellow and a University Scholar. Her recent work in the Gottardi Lab focuses on using decellularized cartilage scaffolds to repair the meniscus and airway. After her undergraduate degree, she hopes to pursue a Ph.D. or M.D.-Ph.D. in bioengineering to pursue the design of new biomaterials for low-resource communities.

 

Read more stories featuring Gottardi and his team here.

“You get what you put in”: A First-generation Penn Bioengineering Graduate Student Discusses His Journey

Joseph Lance Casila

Joseph Lance Casila, a doctoral student and Fontaine Fellow in Bioengineering, was profiled by his alma mater, the University of Guam (UOG. Casila was the first person in his family to graduate from a U.S.-accredited university and is now studying tissue engineering and regenerative medicine in the Bioengineering and Biomaterials Laboratory of Riccardo Gottardi, Assistant Professor in Bioengineering in Penn Engineering and Pediatrics in Penn Medicine and the Children’s Hospital of Philadelphia (CHOP). His research in the Gottardi lab employs “tissue engineering and drug delivery for biomedical problems relating to knees, ears, nose, and throat but specifically to pediatric airway disorders.” The article discusses Casila’s journey from valedictorian of his high school, to a first-generation undergraduate interested bioengineering, and now a graduate student studying at Penn on a full scholarship. After completing his degree, Casila hopes to bring what he’s learned back home to advance health care in Guam.

“My mentors, and especially my friends, helped me make the most of what UOG had to offer, and it paid off rewardingly,” he said. “You get what you put in.”

Read “A first-generation student’s path to an Ivy League Ph.D. program” in the University of Guam News & Announcements.

Developing Endotracheal Tubes that Release Antimicrobial Peptides

by Evan Lerner

Scanning electron microscope images of endotracheal tubes at three levels of magnification. After 24 hours of Staphylococcus epidermidis exposure, tubes coated with the researchers’ AMPs (right) showed decreased biofilm production, as compared with tubes coated with just polymer (center) and uncoated tubes (left).

Endotracheal tubes are a mainstay of hospital care, as they ensure a patient’s airway is clear when they can’t breathe on their own. However, keeping a foreign object inserted in this highly sensitive part of the anatomy comes is not without risk, such as the possibility of infection, inflammation and a condition known as subglottic stenosis, in which scar tissue narrows the airway.

Broad-spectrum antibiotics are one way to mitigate these risks, but come with risks of their own, including harming beneficial bacteria and contributing to antibiotic resistance.

With this conundrum in mind, Riccardo Gottardi, Assistant Professor of Pediatrics at the Children’s Hospital of Philadelphia (CHOP) and of Bioengineering at Penn Engineering, along with Bioengineering graduate students and lab members Matthew Aronson and Paul Gehret, are developing endotracheal tubes that can provide a more targeted antimicrobial defense.

In a proof-of-concept study published in the journal The Laryngoscope, the team showed how a different type of antimicrobial agent could be incorporated into the tubes’ polymer coating, as well as preliminary results suggesting these devices would better preserve a patient’s microbiome.

Instead, the investigators explored the use of antimicrobial peptides (AMPs), which are small proteins that destabilize bacterial membranes, causing bacterial cells to fall apart and die. This mechanism of action allows them to target specific bacteria and makes them unlikely to promote antimicrobial resistance. Prior studies have shown that it is possible to coat endotracheal tubes with conventional antibiotics, so the research team investigated the possibility of incorporating AMPs into polymer-coated tubes to inhibit bacterial growth and modulate the upper-airway microbiome.

The researchers, led by Matthew Aronson, a graduate student in Penn Engineering’s Department of Bioengineering, tested their theory by creating a polymer coating that would release Lasioglossin-III, an AMP with broad-spectrum antibacterial activity. They found that Lasio released from coated endotracheal tubes, reached the expected effective concentration rapidly and continued to release at the same concentration for a week, which is the typical timeframe that an endotracheal is used before being changed. The investigators also tested their drug-eluting tube against airway microbes, including S. epidermidis, S. pneumoniae, and human microbiome samples and observed significant antibacterial activity, as well as prevention of bacterial adherence to the tube.

Read “CHOP Researchers Develop Coating for Endotracheal Tubes that Releases Antimicrobial Peptides” at CHOP News.

This post originally appeared in Penn Engineering Today.

2021 Graduate Research Fellowships for Bioengineering Students

We are very pleased to announce that ten current and future graduate students in the Department of Bioengineering have received 2021 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. Further information about the program can be found on the NSF website. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of 2021 recipients and descriptions of their research.

Current Students:

Puneeth Guruprasad

Puneeth Guruprasad is a Ph.D. student in the lab of Marco Ruella, Assistant Professor of Medicine in the Division of Hematology/Oncology and the Center for Cellular Immunotherapies at the Perelman School of Medicine. His work applies next generation sequencing methods to characterize tumors and study the genetic basis of resistance to cancer immunotherapy, namely chimeric antigen receptor (CAR) T cell therapy.

Gabrielle Ho

Gabrielle (Gabby) Ho is a Ph.D. student in the lab of Brian Chow, Associate Professor in Bioengineering. She works on design strategies for engineering near-infrared fluorescent proteins and tools.

 

Abbas Idris

Abbas Idris is a Master’s student in the lab of Lukasz Bugaj, Assistant Professor in Bioengineering. His work focuses on using optogenetic tools to develop controllable protein assemblies for the study of cell signaling behaviors.

 

 

Incoming Students:

Additionally, seven NSF GRFP honorees from other institutions will be joining our department as Ph.D. students in the fall of 2021. We congratulate them as well and look forward to welcoming them to Penn:

Congratulations again to all our current and future graduate students on their amazing research!

Manuela Raimondi Appointed Visiting Professor in Bioengineering

Manuela Raimondi, PhD

Manuela Teresa Raimondi was appointed Visiting Professor in Bioengineering in the Associated Faculty of the School of Engineering and Applied Science for the 2020-2021 academic year. Raimondi received her Ph.D. in Bioengineering in 2000 from Politecnico di Milano, Italy. She is currently a Full Professor of Bioengineering at Politecnico di Milano in the Department of Chemistry, Materials and Chemical Engineering “G. Natta”, where she teaches the course “Technologies for Regenerative Medicine” in the Biomedical Engineering graduate program.

Raimondi is the founder and Director of the Mechanobiology Lab and of the Interdepartmental Live Cell Imaging lab. She has pioneered the development of cutting edge tools for cell modelling, ranging from micro-engineered stem cell niches, to miniaturized windows for in vivo intravital imaging, to microfluidic culture systems to engineer tissue-equivalents and organoids for cell modelling and drug discovery. Her platforms are currently commercialized by her start-up, MOAB srl. Her research is funded by the European Research Council (ERC), by The National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), by the European Commission, and by the European Space Agency.

“Getting to Penn was quite the challenge with the various travel restrictions and the pandemic, but I am used to overcoming adverse odds and I am really excited to be here now,” says Dr. Raimondi. “In this challenging time, when many new barriers are coming up, I think building bridges and new scientific collaborations is even more important. I very much look forward to being part of the Penn research community.”

Dr. Raimondi with host Riccardo Gottardi, PhD on Smith Walk

During her sabbatical at Penn, Raimondi is investigating her hypothesis that stem cells pluripotency reprogramming can be guided by mechanical cues. Over the past five years, she has cultured many different stem cell types in the “Nichoids,” the synthetic stem cell niche she developed, and gathered robust evidence on how physical constraints at the microscale level upregulate pluripotency. Raimondi is hosted in the Bioengineering and Biomaterials Lab of Riccardo Gottardi, Assistant Professor in Bioengineering and in Pediatrics at the Perelman School of Medicine, where she is helping to refine human stem cell sources that could be minimally manipulated for translational tissue engineering for a safe and effective use in regenerative therapies, as a key issue for clinical translation is the maintenance or enhancement of multipotency during cell expansion without exogenous agents or genetic modification.

“Dr. Raimondi is a trailblazer in Italy in regenerative medicine who has introduced many new concepts in a sometimes musty academic environment and has shattered a number of glass ceilings,” says Dr. Gottardi. “I think her sabbatical at Penn is a great opportunity for her and for the Penn community to build new and exciting trans-Atlantic collaborations.”