Two from Penn Bioengineering Graduate Group Elected to the National Academy of Sciences

Four faculty from the University of Pennsylvania have been elected to the United States National Academy of Sciences (NAS). They are David Brainard of the School of Arts & Sciences; Duncan Watts of the Annenberg School of Communication, School of Engineering and Applied Science, and Wharton School; and Susan R. Weiss and Kenneth S. Zaret of the Perelman School of Medicine.

They join 120 members and 23 international members elected by their peers this year to NAS. Recognized for “distinguished and continuing achievements in original research,” this new class brings the total number of active members to 2,565 and of international members to 526.

Brainard and Zaret are members of the Penn Bioengineering Graduate Group.

David Brainard is the RRL Professor of Psychology, director of the Vision Research Center, and associate dean for the natural sciences in the School of Arts & Sciences. His research focuses on human vision, using both experiments and computer modeling of visual processing, to understand how the visual system deciphers information about objects from light entering the eye. Specifically, he and his lab are interested in color vision, conducting psychophysical experiments to investigate how the appearance of color is affected by an object’s surface properties and ambient light, and how color perception aids in identifying objects. Brainard is the recipient of many honors, including the Macbeth Award from the Inter-Society Color Council, Stein Innovation Award from Research to Prevent Blindness, and Edgard D. Tillyer Award from Optica. He is an elected member of the Society of Experimental Psychologists, a Silver Fellow of the Association for Research in Vision and Ophthalmology, and a Fellow of the Association for Psychological Science.

Kenneth Zaret

Kenneth S. Zaret is the Joseph Leidy Professor in the Department of Cell and Developmental Biology at the Perelman School of Medicine, director of the Institute for Regenerative Medicine, and a member of the Cell and Molecular Biology Graduate Program. His research focuses on gene regulation, cell differentiation, and chromatin structure, with a goal of elucidating these phenomena in the context of embryonic development and tissue regeneration. Pinpointing these aspects of development at the cellular level can serve as the basis for developing future therapeutics and experimental models that further scientists’ ability to understand and cure disease. Zaret has been the recipient of many honors, including a MERIT Award from the National Institutes of Health, the Stanley N. Cohen Biomedical Research Award, and election as a fellow of the American Association for the Advancement of Science.

Read the full announcement in Penn Today.

Grace Hopper Distinguished Lecture: “How Memory Guides Value-Based Decisions” (Daphna Shohamy, Columbia University)

We hope you will join us for the 2022 Grace Hopper Distinguished Lecture by Dr. Jennifer Lewis, presented by the Department of Bioengineering and hosted by Dani S. Bassett, J. Peter Skirkanich Professor in Bioengineering, Electrical and Systems Engineering, Physics & Astronomy, Neurology and Psychiatry.

Date: Thursday, December 8, 2022
Start Time: 3:30 PM EST
Location: Glandt Forum, Singh Center for Nanotechnology, 3205 Walnut Street, Philadelphia, PA 19104

Join us after the live lecture for a light reception!

Daphna Shohamy, Ph.D.

 

Speaker: Daphna Shohamy, Ph.D.
Kavli Professor of Brain Science, Co-Director of the Kavli Institute for Brain Science, Professor in the Department of Psychology & Zuckerman Mind Brain Behavior Institute
Columbia University

Title: “How Memory Guides Value-Based Decisions”

Zoom link
Passcode: 704696

 

Lecture Abstract:

From robots to humans, the ability to learn from experience turns a rigid response system into a flexible, adaptive one. In the past several decades, major advances have been made in understanding how humans and other animals learn from experience to make decisions. However, most of this progress has focused on rather simple forms of stimulus-response learning, such as automatic responses or habits. In this talk, I will turn to consider how past experience guides more complex decisions, such as those requiring flexible reasoning, inference, and deliberation. Across a range of behavioral contexts, I will demonstrate a critical role for memory in such decisions and will discuss how multiple brain regions interact to support learning, what this means for how memories are used, and the consequences for how decisions are made. Uncovering the pervasive role of memory in decision-making challenges the way we think about what memory is for, suggesting that memory’s primary purpose may be to guide future behavior and that storing a record of the past is just one way to do so.

Dr. Shohamy Bio:

Daphna Shohamy, PhD is a professor at Columbia University where she co-directs the Kavli Center for Neural Sciences and is Associate Director of the Zuckerman Mind, Brain Behavior Institute. Dr. Shohamy’s work focuses on the link between memory, and decision-making. Combining brain imaging in healthy humans with studies of patients with neurological and psychiatric disorders, Dr. Shohamy seeks to understand how the brain transforms experiences into memories; how memories shape decisions and actions; and how motivation and exploration affect human behavior.

Information on the Grace Hopper Lecture:
In support of its educational mission of promoting the role of all engineers in society, the School of Engineering and Applied Science presents the Grace Hopper Lecture Series. This series is intended to serve the dual purpose of recognizing successful women in engineering and of inspiring students to achieve at the highest level.

Rear Admiral Grace Hopper was a mathematician, computer scientist, systems designer and the inventor of the compiler. Her outstanding contributions to computer science benefited academia, industry and the military. In 1928 she graduated from Vassar College with a B.A. in mathematics and physics and joined the Vassar faculty. While an instructor, she continued her studies in mathematics at Yale University where she earned an M.A. in 1930 and a Ph.D. in 1934. Grace Hopper is known worldwide for her work with the first large-scale digital computer, the Navy’s Mark I. In 1949 she joined Philadelphia’s Eckert-Mauchly, founded by the builders of ENIAC, which was building UNIVAC I. Her work on compilers and on making machines understand ordinary language instructions lead ultimately to the development of the business language, COBOL. Grace Hopper served on the faculty of the Moore School for 15 years, and in 1974 received an honorary degree from the University. In support of the accomplishments of women in engineering, each department within the School invites a prominent speaker for a one or two-day visit that incorporates a public lecture, various mini-talks and opportunities to interact with undergraduate and graduate students and faculty.

Defining Neural “Representation”

by Marilyn Perkins

Neuroscientists frequently say that neural activity ‘represents’ certain phenomena, PIK Professor Konrad Kording and postdoc Ben Baker led a study that took a philosophical approach to tease out what the term means.

Monitors Show EEG Reading and Graphical Brain Model. In the Background Laboratory Man Wearing Brainwave Scanning Headset Sits in a Chair with Closed Eyes. In the Modern Brain Study Research Laboratory
Neuroscientists use the word “represent” to encompass multifaceted relationships between brain activity, behavior, and the environment.

One of neuroscience’s greatest challenges is to bridge the gaps between the external environment, the brain’s internal electrical activity, and the abstract workings of behavior and cognition. Many neuroscientists rely on the word “representation” to connect these phenomena: A burst of neural activity in the visual cortex may represent the face of a friend or neurons in the brain’s memory centers may represent a childhood memory.

But with the many complex relationships between mind, brain, and environment, it’s not always clear what neuroscientists mean when they say neural activity “represents” something. Lack of clarity around this concept can lead to miscommunication, flawed conclusions, and unnecessary disagreements.

To tackle this issue, an interdisciplinary paper takes a philosophical approach to delineating the many aspects of the word “representation” in neuroscience. The work, published in Trends in Cognitive Sciences, comes from the lab of Konrad Kording, a Penn Integrates Knowledge University Professor and senior author on the study whose research lies at the intersection of neuroscience and machine learning.

“The term ‘representation’ is probably one of the most common words in all of neuroscience,” says Kording, who has appointments in the Perelman School of Medicine and School of Engineering and Applied Science. “But it might mean something very different from one professor to another.”

Read the full story in Penn Today.

Konrad Kording is a Penn Integrates Knowledge University Professor with joint appointments in the Department of Neuroscience the Perelman School of Medicine and in the Department of Bioengineering in the School of Engineering and Applied Science.

Ben Baker is a postdoctoral researcher in the Kording lab and a Provost Postdoctoral Fellow. Baker received his Ph.D. in philosophy from Penn.

Also coauthor on the paper is Benjamin Lansdell, a data scientist in the Department of Developmental Neurobiology at St. Jude Children’s Hospital and former postdoctoral researcher in the Kording lab.

Funding for this study came from the National Institutes of Health (awards 1-R01-EB028162-01 and R01EY021579) and the University of Pennsylvania Office of the Vice Provost for Research.

Using Big Data to Measure Emotional Well-being in the Wake of George Floyd’s Murder

by Melissa Pappas

George Floyd’s murder had an undeniable emotional impact on people around the world, as evidenced by this memorial mural in Berlin, but quantifying that impact is challenging. Researchers from Penn Engineering and Stanford have used a computational approach on U.S. survey data to break down this emotional toll along racial and geographic lines. Their results show a significantly larger amount of self-reported anger and sadness among Black Americans than their White counterparts. (Photo: Leonhard Lenz)

The murder of George Floyd, an unarmed Black man who was killed by a White police officer, affected the mental well-being of many Americans. The effects were multifaceted as it was an act of police brutality and example of systemic racism that occurred during the uncertainty of a global pandemic, creating an even more complex dynamic and emotional response.

Because poor mental health can lead to a myriad of additional ailments, including poor physical health, inability to hold a job and an overall decrease in quality of life, it is important to understand how certain events affect it. This is especially critical when the emotional burden of these events  falls most on demographics affected by systemic racism. However, unlike physical health, mental health is challenging to characterize and measure, and thus, population-level data on mental health has been limited.

To better understand patterns of mental health on a population scale, Penn Engineers Lyle H. Ungar, Professor of Computer and Information Science (CIS), and Sharath Chandra Guntuku, Research Assistant Professor in CIS, take a computational approach to this challenge. Drawing on large-scale surveys as well as language analysis in social media through their work with the World Well-Being Project, they have developed visualizations of these patterns across the U.S.

Their latest study involves tracking changes in emotional and mental health following George Floyd’s murder. Combining polling data from the U.S. Census and Gallup, Guntuku, Ungar and colleagues have shown that Floyd’s murder spiked a wave of unprecedented sadness and anger across the U.S. population, the largest since relevant data began being recorded in 2009.

Read the full story in Penn Engineering Today.

N.B. Lyle Ungar is also a member of the Penn Bioengineering Graduate Group.

Looking Towards the Future Through an Interdisciplinary Lens

by Erica K. Brockmeier

Yasmina Al Ghadban, a senior in the School of Engineering and Applied Science from Beirut, was able to connect her undergraduate education in bioengineering and psychology with her passion for public health through teaching, research, and extracurricular activities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

While reflecting on her undergraduate journey at Penn, senior Yasmina Al Ghadban says that she has a “ton of memories” she will take with her: lifelong friends made and skills developed through coursework, research, and teaching experiences, the chance to engage with public health communities on campus, and traveling for courses and internships. “That’s the beauty of Penn,” she says. “There’s just so many opportunities everywhere.”

As a double major in bioengineering and psychology, Al Ghadban, who is from Beirut, has certainly taken advantage of many such opportunities. Now, she is poised to leverage her “interdisciplinary lens” towards a future career in public health.

Problem-solving perspectives

Looking for a place to grow and become more independent, Al Ghadban decided to come to Penn after graduating from the International College in Lebanon. After taking an introduction to bioengineering course during her freshman year, she became enthralled by the hands-on nature of the program and enrolled in the School of Engineering and Applied Science. “I really enjoyed working with circuits and Arduino, being able to synthesize things, and I felt like being in engineering was the place where I was going to gain the most skills,” she says.

Al Ghadban is applying those skills as she completes her senior design project. She and a team of four seniors are building an autonomous robot equipped with Lidar sensors that it uses to create a map of a physical space. The team also programmed their robot to recognize high-touch surfaces that it then disinfects with UV light. “It’s a technology that is completely autonomous, cheaper than what’s on the market, and doesn’t put people at risk when they go in to disinfect,” she says. The team recently put the finishing touches on the project and presented their robot as part of a demonstration on April 14.

In addition to her degree in engineering, Al Ghadban’s interests in public and mental health spurred her to take courses and eventually pursue a double major in psychology, a field that she sees as complementary to engineering. “In psychology, we focus a lot on research and study design, research bias, and these things are similar in engineering and psychology,” she says. “Overall, I think they gave me different perspectives in terms of problem solving, and it’s nice to have that interdisciplinary lens.”

One place where Al Ghadban was able to use this interdisciplinary lens was while working as an research assistant in the Rehabilitation Robotics Lab with Michelle Johnson during her sophomore year. “The focus of the lab is to create robots for post-stroke rehabilitation, and the robotics part is very engineering-focused, but there is another part where people struggle doing the exercises,” she says. “Being able to engage with people and increasing their likelihood of doing that intervention, you rely on a lot from psychology, like interventions from positive psychology or research on how people stay engaged.”

Continue reading at Penn Today.

An ‘Electronic Nose’ to Sniff Out COVID-19

by Erica K. Brockmeier

Postdoc Scott Zhang at work in the Johnson lab. (Photo: Eric Sucar, University Communications)

Even as COVID-19 vaccines are being rolled out across the country, the numerous challenges posed by the pandemic won’t all be solved immediately. Because herd immunity will take some time to reach and the vaccine has not yet been approved for some groups, such as children under 16 years of age, the coming months will see a continued need for tools to rapidly track the disease using real-time community monitoring.

A team of Penn researchers is working on a new “electronic nose” that could help track the spread of COVID-19. Led by physicist Charlie Johnson, the project, which was recently awarded a $2 million grant from the NIH, aims to develop rapid and scalable handheld devices that could spot people with COVID-19 based on the disease’s unique odor profile.

Dogs and devices that can detect diseases

Long before “coronavirus” entered into the vernacular, Johnson was collaborating with Cynthia Otto, director of the Penn Vet Working Dog Center, and Monell Chemical Senses Center’s George Preti to diagnose diseases using odor. Diseases are known to alter a number of physical processes, including body odors, and the goal of the collaboration was to develop new ways to detect the volatile organic compounds (VOCs) that were unique to ovarian cancer.

The next step is to scale down the current device, and the researchers are aiming to develop a prototype for testing on patients within the next year.

Since 2012, the researchers have been developing new ways to diagnose early-stage ovarian cancer. Otto trained dogs to recognize blood plasma samples from patients with ovarian cancer using their acute sense of smell. Preti, who passed away last March, was looking for the specific VOCs that gave ovarian cancer a unique odor. Johnson developed a sensor array, an electronic version of the dog’s nose, made of carbon nanotubes interwoven with single-stranded DNA. This device binds to VOCs and can determine samples that came from patients with ovarian cancer.

Last spring, as the pandemic’s threat became increasingly apparent, Johnson and Otto shifted their efforts to see if they could train their disease-detecting devices and dogs to spot patients with COVID-19.

Continue reading at Penn Today.

N.B.: A.T. Charlie Johnson, Rebecca W. Bushnell Professor of Physics and Astronomy at the Penn School of Arts & Sciences, and Lyle Ungar, Professor in Computer and Information Science at Penn Engineering and Psychology at the School of Arts & Sciences, are both members of the Penn Bioengineering Graduate Group.

Penn Postdoctoral Researcher David Lydon-Staley Appointed Assistant Professor in Annenberg School for Communication

by Sophie Burkholder

A Penn Bioengineer will soon join the Annenberg School for Communication as an Assistant Professor of Communication. David Lydon-Staley, Ph.D., recently completed two years as a Postdoctoral Researcher in Penn’s Complex Systems Lab, led by Danielle Bassett, Ph.D., the J. Peter Skirkanich Professor of Bioengineering and Electrical and Systems Engineering.

David Lydon-Staley, Ph.D.

Lydon-Staley started out studying English and Psychology in his undergraduate education, going on to pursue a Ph.D. from Penn State University in Human Development and Family Studies. What brought him to Bassett’s lab was his interest in using cognitive neuroscience to understand the brain patterns and behaviors behind substance abuse and addiction. There, Lydon-Staley examined networks of nicotine withdrawal behaviors, how those behaviors impact each other, and what information they might hold about how to help smokers in their quit attempts. “David’s breadth of interest is only rivalled by his expansive expertise and bottomless enthusiasm,” says Bassett. “I feel incredibly lucky to have had the chance to work with him.”

In his new role at Annenberg, Lydon-Staley will launch the Addiction, Health, and Adolescence Lab, or “AHA!” for short. “My recent work examines engagement with new media during the course of daily life, and how the information sought and encountered relates to both curiosity and substance use,” he says. Lydon-Staley’s new lab will use methods like experience-sampling and functional Magnetic Resonance Imaging to understand brain and behavior, while drawing on theories and tools from  communication, psychology, cognitive neuroscience, network science, and more.

Even though Lydon-Staley will be working out of a new school at Penn, he still has plans to continue collaborating with the Bassett Lab. One ongoing project he has with the lab involves studying how curiosity works in everyday life, and another looks at moment-to-moment patterns of cigarette withdrawal in daily smokers. “Working in the Bassett Lab gave me the confidence and ability to stretch my wings, chase ideas across traditional disciplinary lines, learn new skills, and collaborate with creative and capable scientists every day,” says Lydon-Staley. Those are opportunities he hopes to keep chasing and fostering in his new position.

Beyond continuing his prior research from a communication-based angle, Lydon-Staley is also excited to develop new classes in the Annenberg School. “Annenberg is a very special place. It is an active school, with frequent seminars and many vibrant research centers,” he says. Informed and inspired by the breadth of research from Annenberg scholars, Lydon-Staley hopes that he can create classes that focus on the psychology of time and timing in everyday life—topics that he spends a lot of time thinking about himself.

Above all, Lydon-Staley is excited by the opportunity to stay at Penn and continue the kind of versatile and multi-faceted studies that have been the bedrock of his research so far. He hopes to continue expanding his previous work with not only the Engineering School, but the School of Medicine and the Graduate School of Education as well. “The opportunities for interdisciplinary collaboration at Penn are unrivaled, and I am constantly in awe of the quality of students here.”

Language in Tweets Offers Insight Into Community-level Well-being

In a Q&A, researcher Lyle Ungar discusses why counties that frequently use words like ‘love’ aren’t necessarily happier, plus how techniques from this work led to a real-time COVID-19 wellness map.

By Michele W. Berger

Lyle Ungar, Ph.D. (Photo: Eric Sucar)

People in different areas across the United States reacted differently to the threat of COVID-19. Some imposed strict restrictions, closing down most businesses deemed nonessential; others remained partially open.

Such regional distinctions are relatively easy to quantify, with their effects generally understandable through the lens of economic health. What’s harder to grasp is the emotional satisfaction and happiness specific to each place, a notion ’s has been working on for more than five years.

In 2017, the group published the , a free, interactive tool that displays characteristics of well-being by county based on Census data and billions of tweets. Recently, WWBP partnered with ’s Center for Digital Health to create a , which reveals in real time how people across the country perceive COVID-19 and how it’s affecting their mental health.

That map falls squarely in line with a paper published this week in the by computer scientist , one of the principal investigators of the World Well-Being Project, and colleagues from Stanford University, Stony Brook University, the National University of Singapore, and the University of Melbourne.

By analyzing 1.5 billion tweets and controlling for common words like “love” or “good,” which frequently get used to connote a missing aspect of someone’s life rather than a part that’s fulfilled, the researchers found they could discern subjective well-being at the county level. “We have a long history of collecting people’s language and asking people who are happier or sadder what words they use on Facebook and on Twitter,” Ungar says. “Those are mostly individual-level models. Here, we’re looking at community-level models.”

In a conversation with Penn Today, Ungar describes the latest work, plus how it’s useful in the time of COVID-19 and social distancing.

Read Ungar’s Q&A at .

Dr. Lyle Ungar is a Professor of Computer and Information Science and a member of the Department of Bioengineering Graduate Group.

Five Tips to Stay Positive and Healthy During Social Isolation

Though the coronavirus situation is changing daily, even hourly, by now the need for physical separation from those not in your household is clear. That doesn’t mean it’s easy, says Penn psychologist Melissa Hunt.

“We’re social animals,” says Hunt, associate director of clinical training in Penn’s Psychology Department. “We have an entire neuroendocrine system that responds to touch and social proximity with people we care about, that contributes to our sense of well-being and connection in the world. Losing out on that is really hard.”

It’s also not something we’ve really been asked to do before, says Lyle Ungar, a Penn computer scientist who is part of the World Well-Being Project, an initiative that uses social media language to measure psychological well-being and physical health. “This is an experiment on a scale that we’ve never seen in the United States,” he says.

Ungar and Hunt offer some suggestions to stay positive and healthy in the face of this new social isolation.

1. Maintain a connection with the people you love, even if it can’t be a physical one. 

“Social distance does not mean no social contact,” Ungar says. Psychologically, face-to-face conversations are best, but right now they’re not likely possible. Instead, Ungar suggests video calls. “They’re second best in terms of emotional bonding,” he says. “Phone calls aren’t as good as video chats, and texting is even worse. But of course, being totally isolated is the worst.”

Read the full five tips at Penn Today. Media contact Michele W. Berger.

Melissa G. Hunt is the associate director of clinical training in the Department of Psychology in the School of Arts and Sciences at the University of Pennsylvania

Lyle Ungar is a professor in the departments of Bioengineering and Computer and Information Science in the School of Engineering and Applied Science, in the Graduate Group in Genomics and Computational Biology in the Perelman School of Medicine, in the Department of Operations, Information, and Decisions in the Wharton School, and in the Department of Psychology in the School of Arts and Sciences.