New Lipid Nanoparticles Improve mRNA Delivery for Engineering CAR T Cells

by Melissa Pappas

The Penn researchers’ latest paper on the design of lipid nanoparticles was featured on the cover of the most recent edition of the journal Nano Letters.

From COVID vaccines to cancer immunotherapies to the potential for correcting developmental disorders in utero, mRNA-based approaches are a promising tool in the fight against a wide range of diseases. These treatments all depend on providing a patient’s cells with genetic instructions for custom proteins and other small molecules, meaning that getting those instructions inside the target cells is of critical importance.

The current delivery method of choice uses lipid nanoparticles (LNPs). Thanks to surfaces customized with binding and signaling molecules, they encapsulate mRNA sequences and smuggle them through the cell membrane. But with a practically unlimited number of variables in the makeup of those surfaces and molecules, figuring out how to design the most effective LNP is a fundamental challenge.

Now, in a study featured on the cover of the journal Nano Letters, researchers from the University of Pennsylvania’s School of Engineering and Applied Science and Perelman School of Medicine have now shown how to computationally optimize the design of these delivery vehicles.

Using an established methodology for comparing a wide range of variables known as “orthogonal design of experiments,” the researchers simultaneously tested 256 candidate LNPs. They found the frontrunner was three times better at delivering mRNA sequences into T cells than the current standard LNP formulation for mRNA delivery.

The study was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering in Penn’s School of Engineering and Applied Science, and Margaret Billingsley, a graduate student in his lab.

Read the full story in Penn Engineering Today.

Michael Mitchell Receives the 2022 SFB Young Investigator Award

by Ebonee Johnson

Michael Mitchell, Ph.D.

Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, has been awarded the 2022 Society for Biomaterials (SFB) Young Investigator Award for his “outstanding achievements in the field of biomaterials research.”

The Society for Biomaterials is a multidisciplinary society of academic, healthcare, governmental and business professionals dedicated to promoting advancements in all aspects of biomaterial science, education and professional standards to enhance human health and quality of life.

Mitchell, whose research lies at the interface of biomaterials science, drug delivery, and cellular and molecular bioengineering to fundamentally understand and therapeutically target biological barriers, is specifically being recognized for his development of the first nanoparticle RNAi therapy to treat multiple myeloma, an incurable hematologic cancer that colonizes in bone marrow.

“Before this, no one in the drug delivery field has developed an effective gene delivery system to target bone marrow,” said United States National Medal of Science recipient Robert S. Langer in Mitchell’s award citation. “Mike is a standout young investigator and leader that intimately understands the importance of research and collaboration at the interface of nanotechnology and medicine.”

Academic recipients of the SFB Young Investigator Award should not exceed the rank of Assistant Professor and must not be tenured at the time of nomination. The award includes a $1,000 endowment.

This story originally appeared in Penn Engineering Today.

Penn Establishes the Center for Precision Engineering for Health with $100 Million Commitment

by Evan Lerner

The Center for Precision Engineering for Health will bring together researchers spanning multiple scientific fields to develop novel therapeutic biomaterials, such as a drug-delivering nanoparticles that can be designed to adhere to only to the tissues they target. (Image: Courtesy of the Mitchell Lab)

The University of Pennsylvania announced today that it has made a $100 million commitment in its School of Engineering and Applied Science to establish the Center for Precision Engineering for Health.

The Center will conduct interdisciplinary, fundamental, and translational research in the synthesis of novel biomolecules and new polymers to develop innovative approaches to design complex three dimensional structures from these new materials to sense, understand, and direct biological function.

“Biomaterials represent the ‘stealth technology’ which will create breakthroughs in improving health care and saving lives,” says Penn President Amy Gutmann. “Innovation that combines precision engineering and design with a fundamental understanding of cell behavior has the potential to have an extraordinary impact in medicine and on society. Penn is already well established as an international leader in innovative health care and engineering, and this new Center will generate even more progress to benefit people worldwide.”

Penn Engineering will hire five new President’s Penn Compact Distinguished Professors, as well as five additional junior faculty with fully funded faculty positions that are central to the Center’s mission. New state-of-the-art labs will provide the infrastructure for the research. The Center will seed grants for early-stage projects to foster advances in interdisciplinary research across engineering and medicine that can then be parlayed into competitive grant proposals.

“Engineering solutions to problems within human health is one of the grand challenges of the discipline,” says Vijay Kumar, Nemirovsky Family Dean of Penn Engineering. “Our faculty are already leading the charge against these challenges, and the Center will take them to new heights.”

This investment represents a turning point in Penn’s ability to bring creative, bio-inspired approaches to engineer novel behaviors at the molecular, cellular, and tissue levels, using biotic and abiotic matter to improve the understanding of the human body and to develop new therapeutics and clinical breakthroughs. It will catalyze integrated approaches to the modeling and computational design of building blocks of peptides, proteins, and polymers; the synthesis, processing, and fabrication of novel materials; and the experimental characterizations that are needed to refine approaches to design, processing, and synthesis.

“This exciting new initiative,” says Interim Provost Beth Winkelstein, “brings together the essential work of Penn Engineering with fields across our campus, especially in the Perelman School of Medicine. It positions Penn for global leadership at the convergence of materials science and biomedical engineering with innovative new techniques of simulation, synthesis, assembly, and experimentation.”

Examples of the types of work being done in this field include new nanoparticle technologies to improve storage and distribution of vaccines, such as the COVID-19 mRNA vaccines; the development of protocells, which are synthetic cells that can be engineered to do a variety of tasks, including adhering to surfaces or releasing drugs; and vesicle based liquid biopsy for diagnosing cancer.

N.B.: This story originally appeared in Penn Engineering Today.

Beth Winkelstein is the Eduardo D. Glandt President’s Distinguished Professor in Bioengineering.

The featured illustration comes from a recent study led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering, and Margaret Billingsley, a graduate student in his lab.

Penn Engineers Will Use NSF Grant to Develop ‘DReAM’ for On-demand, On-site mRNA Manufacturing

by Melissa Pappas

Daeyeon Lee, Kathleen Stebe and Michael Mitchell

COVID-19 vaccines are just the beginning for mRNA-based therapies; enabling a patient’s body to make almost any given protein could revolutionize care for other viruses, like HIV, as well as various cancers and genetic disorders. However, because mRNA molecules are very fragile, they require extremely low temperatures for storage and transportation. The logistical challenges and expense of maintaining these temperatures must be overcome before mRNA therapies can become truly widespread.

With these challenges in mind, Penn Engineering researchers are developing a new manufacturing technique that would be able to produce mRNA sequences on demand and on-site, isolating them in a way that removes the need for cryogenic temperatures. With more labs able to make and store mRNA-based therapeutics on their own, the “cold chain” between manufacturer and patient can be made shorter, faster and less expensive.

The National Science Foundation (NSF) is supporting this project, known as Distributed Ribonucleic Acid Manufacturing, or DReAM, through a four-year, $2 million grant from its Emerging Frontiers in Research and Innovation (EFRI) program.

The project will be led by Daeyeon Lee, Evan C Thompson Term Chair for Excellence in Teaching and Professor in the Department of Chemical and Biomolecular Engineering (CBE), along with Kathleen Stebe, Richer and Elizabeth Goodwin Professor in CBE and in the Department of Mechanical Engineering and Applied Mechanics. They will collaborate with Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, Drexel University’s Masoud Soroush and Michael Grady, the University of Oklahoma’s Dimitrios Papavassiliou and the University of Colorado Boulder’s Joel Kaar.

Read the full story in Penn Engineering Today.

With a ‘Liquid Assembly Line,’ Penn Researchers Produce mRNA-Delivering-Nanoparticles a Hundred Times Faster than Standard Microfluidic Technologies

by Evan Lerner

Michael Mitchell, Sarah Shepherd and David Issadore pose with their new device.

The COVID vaccines currently being deployed were developed with unprecedented speed, but the mRNA technology at work in some of them is an equally impressive success story. Because any desired mRNA sequence can be synthesized in massive quantities, one of the biggest hurdles in a variety of mRNA therapies is the ability to package those sequences into the lipid nanoparticles that deliver them into cells.

Now, thanks to manufacturing technology developed by bioengineers and medical researchers at the University of Pennsylvania, a hundred-fold increase in current microfluidic production rates may soon be possible.

The researchers’ advance stems from their design of a proof-of-concept microfluidic device containing 128 mixing channels working in parallel. The channels mix a precise amount of lipid and mRNA, essentially crafting individual lipid nanoparticles on a miniaturized assembly line.

This increased speed may not be the only benefit; more precisely controlling the nanoparticles’ size could make treatments more effective. The researchers tested the lipid nanoparticles produced by their device in a mouse study, showing they could deliver therapeutic RNA sequences with four-to-five times greater activity than those made by conventional methods.

The study was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, and David Issadore, Associate Professor in Penn Engineering’s Department of Bioengineering, along with Sarah Shepherd, a doctoral student in both of their labs. Rakan El-Mayta, a research engineer in Mitchell’s lab, and Sagar Yadavali, a postdoctoral researcher in Issadore’s lab, also contributed to the study.

They collaborated with several researchers at Penn’s Perelman School of Medicine: postdoctoral researcher Mohamad-Gabriel Alameh, Lili Wang, Research Associate Professor of Medicine, James M. Wilson, Rose H. Weiss Orphan Disease Center Director’s Professor in the Department of Medicine, Claude Warzecha, a senior research investigator in Wilson’s lab, and Drew Weissman, Professor of Medicine and one of the original developers of the technology behind mRNA vaccines.

It was published in the journal Nano Letters.

“We believe that this microfluidic technology has the potential to not only play a key role in the formulation of current COVID vaccines,” says Mitchell, “but also to potentially address the immense need ahead of us as mRNA technology expands into additional classes of therapeutics.”

Read the full story in Penn Engineering Today.

2021 Graduate Research Fellowships for Bioengineering Students

We are very pleased to announce that ten current and future graduate students in the Department of Bioengineering have received 2021 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. Further information about the program can be found on the NSF website. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of 2021 recipients and descriptions of their research.

Current Students:

Puneeth Guruprasad

Puneeth Guruprasad is a Ph.D. student in the lab of Marco Ruella, Assistant Professor of Medicine in the Division of Hematology/Oncology and the Center for Cellular Immunotherapies at the Perelman School of Medicine. His work applies next generation sequencing methods to characterize tumors and study the genetic basis of resistance to cancer immunotherapy, namely chimeric antigen receptor (CAR) T cell therapy.

Gabrielle Ho

Gabrielle (Gabby) Ho is a Ph.D. student in the lab of Brian Chow, Associate Professor in Bioengineering. She works on design strategies for engineering near-infrared fluorescent proteins and tools.

 

Abbas Idris

Abbas Idris is a Master’s student in the lab of Lukasz Bugaj, Assistant Professor in Bioengineering. His work focuses on using optogenetic tools to develop controllable protein assemblies for the study of cell signaling behaviors.

 

 

Incoming Students:

Additionally, seven NSF GRFP honorees from other institutions will be joining our department as Ph.D. students in the fall of 2021. We congratulate them as well and look forward to welcoming them to Penn:

Congratulations again to all our current and future graduate students on their amazing research!

Michael Mitchell on Keeping mRNA Vaccines Viable

A National Institute of Allergy and Infectious Diseases lab freezer used for COVID-19 vaccine research. Both of the current mRNA-based COVID vaccines require ultra-cold freezers to prevent their mRNA from degrading, spurring research into other ways to stabilize the molecule.

As the technology behind two of the COVID-19 vaccines, Messenger RNA (mRNA) is having a moment. A single-stranded counterpart to DNA, mRNA translates its genetic code into proteins; by injecting mRNA engineered to produce proteins found on the exterior of the virus, the vaccine can train a person’s immune system to recognize the real thing without making them sick.

However, because mRNA is a relatively unstable molecule, distributing these vaccines involves extra logistical challenges. Doses must be transported and stored at ultra-cold temperatures to make sure the mRNA inside doesn’t degrade and lose the genetic information it carries.

Michael Mitchell
Michael Mitchell

As mRNA vaccines and other therapies take off, researchers are looking for other ways to forestall this degradation. One of them is Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, who is studying the use of lipid nanoparticles to encapsulate and protect mRNA on its way into the cell. That sort of packaging would be particularly beneficial in proposed mRNA therapies for certain genetic disorders, which aim to deliver the correct protein-making instructions to specific organs, or even a fetus in utero.

But for stabilizing mRNA for vaccine distribution, many other strategies are being explored. In “Keeping covid vaccines cold isn’t easy. These ideas could help,” Wudan Yan of MIT Technology Review reached out to Mitchell for insight on LIONs, or lipid inorganic nanoparticles. These nanoparticles work the opposite way of Mitchell’s organic ones, with the mRNA stabilized by binding to their exteriors.

Continue reading at MIT Technology Review.

Originally posted in Penn Engineering Today.

‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’

William H. Peranteau, Michael J. Mitchell, Margaret Billingsley, Meghana Kashyap, and Rachel Riley (Clockwise from top left)

As COVID-19 vaccines roll out, the concept of using mRNA to fend off viruses has become a part of the public dialogue. However, scientists have been researching how mRNA can be used to in life-saving medical treatments well before the pandemic.

The “m” in “mRNA” is for “messenger.” A single-stranded counterpart to DNA, it translates the genetic code into the production of proteins, the building blocks of life. The Moderna and Pfizer COVID-19 vaccines work by introducing mRNA sequences that act as a set of instructions for the body to produce proteins that mimic parts of the virus itself. This prepares the body’s immune response to recognize the real virus and fight it off.

Because it can spur the production of proteins that the body can’t make on its own, mRNA therapies also have the potential to slow or prevent genetic diseases that develop before birth, such as cystic fibrosis and sickle-cell anemia.

However, because mRNA is a relatively unstable molecule that degrades quickly, it needs to be packaged in a way that maintains its integrity as its delivered to the cells of a developing fetus.

To solve this challenge, Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, is researching the use of lipid nanoparticles as packages that transport mRNA into the cell. He and William H. Peranteau, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at Children’s Hospital of Philadelphia, recently co-authored a “proof-of-concept” paper investigating this technique.

In this study, published in Science Advances, Mitchel examined which nanoparticles were optimal in the transport of mRNA to fetal mice. Although no disease or organ was targeted in this study, the ability to administer mRNA to a mouse while still in the womb was demonstrated, and the results are promising for the next stages of targeted disease prevention in humans.

Mitchel spoke with Tom Avril at The Philadelphia Inquirer about the mouse study and its implications for treatment of rare infant diseases through the use of mRNA, ‘the messenger of life.’

Penn bioengineering professor Michael J. Mitchell, the other senior author of the mouse study, tested various combinations of lipids to see which would work best.

The appeal of the fatty substances is that they are biocompatible. In the vaccines, for example, two of the four lipids used to make the delivery spheres are identical to lipids found in the membranes of human cells — including plain old cholesterol.

When injected, the spheres, called nanoparticles, are engulfed by the person’s cells and then deposit their cargo, the RNA molecules, inside. The cells respond by making the proteins, just as they make proteins by following the instructions in the person’s own RNA. (Important reminder: The RNA in the vaccines cannot become part of your DNA.)

Among the different lipid combinations that Mitchell and his lab members tested, some were better at delivering their cargo to specific organs, such as the liver and lungs, meaning they could be a good vehicle for treating disease in those tissues.

Continue reading Tom Avril’s ‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’ at The Philadelphia Inquirer.

Penn Engineering and CHOP Researchers Identify Nanoparticles that Could Be Used in Therapeutic mRNA Delivery before Birth

by Evan Lerner

William H. Peranteau, Michael J. Mitchell, Margaret Billingsley, Meghana Kashyap, and Rachel Riley (Clockwise from top left)

Researchers at Children’s Hospital of Philadelphia and the School of Engineering and Applied Science at the University of Pennsylvania have identified ionizable lipid nanoparticles that could be used to deliver mRNA as part of fetal therapy. The proof-of-concept study, published today in Science Advances, engineered and screened a number of lipid nanoparticle formulations for targeting mouse fetal organs and has laid the groundwork for testing potential therapies to treat genetic diseases before birth.

“This is an important first step in identifying nonviral mediated approaches for delivering cutting-edge therapies before birth,” said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at CHOP. “These lipid nanoparticles may provide a platform for in utero mRNA delivery, which would be used in therapies like fetal protein replacement and gene editing.”

Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, is the other co-senior author of the study. The co-first authors are Mitchell Lab members Rachel Riley, a postdoctoral fellow, and Margaret Billingsley, a graduate student, and Peranteau Lab member Meghana Kashyap, a research fellow.

Recent advances in DNA sequencing technology and prenatal diagnostics have made it possible to diagnose many genetic diseases before birth. Some of these diseases are treated by protein or enzyme replacement therapies after birth, but by then, some of the damaging effects of the disease have taken hold. Thus, applying therapies while the patient is still in the womb has the potential to be more effective for some conditions. The small fetal size allows for maximal therapeutic dosing, and the immature fetal immune system may be more tolerant of replacement therapy.

Read the full story in Penn Engineering Today.

NB: Rachel Riley is now Assistant Professor in Biomedical Engineering at Rowan University.

Christian Figueroa-Espada Named 2020-2021 Hispanic Scholarship Fund Scholar

Christian Figueroa-Espada

Christian Figueroa-Espada, a Penn Bioengineering Ph.D. student and National Science Foundation (NSF) Fellow, was selected as a Hispanic Scholarship Fund (HSF) Scholar from a highly-competitive pool of 85,000 applicants for their 2020-2021 program. One of only 5,100 awardees, Figueroa-Espada’s scholarship comes from the Toyota Motor North America Program. As an HSF Scholar, he has access to a full range of Scholar Support Services, such as career coaching, internship, and full-time employment opportunities, mentoring, leadership development, and wellness resources, including tools for self-advocacy, well-being, and knowledge building.

Born and raised in the Island of Enchantment, Puerto Rico, Figueroa-Espada received his B.S. in Mechanical Engineering from the University of Puerto Rico at Mayagüez, and is currently a second-year Ph.D. student in the lab of Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering, where he is funded by the National Science Foundation Graduate Research Fellowship Program (NSF GRFP), the Graduate Education for Minorities (GEM) Fellowship Program, and the William Fontaine Fellowship. His research interests lie in the interface of biomaterials, drug delivery, and immunology – designing RNAi therapeutics for the reprogramming of the tumor microenvironment. His current project focuses on polymer-lipid drug delivery systems to study potential strategies to prevent homing and proliferation of multiple myeloma cancer within the bone marrow microenvironment. This project is part of the Mitchell lab’s recent National Institutes of Health (NIH) New Innovator Award.

“Chris has really hit the ground running on his Ph.D. studies at Penn Bioengineering, developing a new bone marrow-targeted nanoparticle platform to disrupt the spread of multiple myeloma throughout the body,” says Mitchell. “I’m very hopeful that this prestigious fellowship from HSF will permit him to make important contributions to nanomedicine and cancer research.”

Figueroa-Espada’s passion for giving back to his community has allowed him to be involved in many mentorship programs as part of his roles in the Society of Hispanics and Professional Engineers (SHPE), the National Society of Professional Engineers (NSPE), the Society of Women Engineers (SWE), and the Graduate Association of Bioengineers (GABE). He continues with his fervent commitment, now working with the Penn chapter of the Society for Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS), and the Penn Interdisciplinary Network for Scientists Promoting Inclusion, Retention, and Equity (INSPIRE) coalition where he plans on leading initiatives that aim to enhance diversity and student participation in science, especially students from historically marginalized groups.

“This fellowship, along with my NSF Graduate Research Fellowship, GEM Fellowship, and William Fontaine Fellowship through the University of Pennsylvania, make my research on nanoparticle-based RNA therapeutics for the reprogramming of the tumor microenvironment to treat malignancies and overcome drug resistance possible,” says Figueroa-Espada. “While my professional goal is to stay in academia and lead a research lab, my personal goal is to become whom I needed: a role model within the Latino STEM community, hoping to address many of the difficulties that impede Latino students’ success in higher education, and thanks to Toyota Motor/HSF, NSF, and GEM, I am one step closer to meeting these goals.”