The Penn Center for Precision Engineering for Health Announces First Round of Seed Funding

by Melissa Pappas

CPE4H is one of the focal points of Penn Engineering signature initiative on Engineering Health.

The Penn Center for Precision Engineering for Health (CPE4H) was established late last year to accelerate engineering solutions to significant problems in healthcare. The center is one of the signature initiatives for Penn’s School of Engineering and Applied Science and is supported by a $100 million commitment to hire faculty and support new research on innovative approaches to those problems.

Acting on that commitment, CPE4H solicited proposals during the spring of 2022 for seed grants of $80K per year for two years for research projects that address healthcare challenges in several key areas of strategic importance to Penn: synthetic biology and tissue engineering, diagnosis and drug delivery, and the development of innovative devices. While the primary investigators (PIs) for the proposed projects were required to have a primary faculty appointment within Penn Engineering, teams involving co-PIs and collaborators from other schools were eligible for support. The seed program is expected to continue for the next four years.

“It was a delight to read so many novel and creative proposals,” says Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and the Inaugural Director of CPE4H. “It was very hard to make the final selection from a pool of such promising projects.”

Judged on technical innovation, potential to attract future resources, and ability to address a significant medical problem, the following research projects were selected to receive funding.

Evolving and Engineering Thermal Control of Mammalian Cells

Led by Lukasz Bugaj, Assistant Professor in Bioengineering, this project will engineer molecular switches that can be toggled on and off inside mammalian cells at near-physiological temperatures. Successful development of these switches will provide new ways to communicate with cells, an advance that could be used to make safer and more effective cellular therapies.  The project will use directed evolution to generate and find candidate molecular tools with the desired properties. Separately, the research will also develop new technology for manipulating cellular temperature in a rapid and programmable way. Such devices will enhance the speed and sophistication of studies of biological temperature regulation.

A Quantum Sensing Platform for Rapid and Accurate Point-of-Care Detection of Respiratory Viral Infections

Combining microfluidics and quantum photonics, PI Liang Feng, Professor in Materials Science and Engineering and Electrical and Systems Engineering, Ritesh Agarwal, Professor in Materials Science Engineering, and Shu Yang, Joseph Bordogna Professor in Materials Science and Engineering and Chemical and Biomolecular Engineering, are teaming up with Ping Wang, Professor of Pathology and Laboratory Medicine in Penn’s Perelman School of Medicine, to design, build and test an ultrasensitive point-of-care detector for respiratory pathogens. In light of the COVID-19 pandemic, a generalizable platform for rapid and accurate detection of viral pathogenesis would be extremely important and timely.

Versatile Coacervating Peptides as Carriers and Synthetic Organelles for Cell Engineering

PI Amish Patel, Associate Professor in Chemical and Biomolecular Engineering, and Matthew C. Good, Associate Professor of Cell and Developmental Biology in the Perelman School of Medicine and in Bioengineering, will design and create small proteins that self-assemble into droplet-like structures known as coacervates, which can then pass through the membranes of biological cells. Upon cellular entry, these protein coacervates can disassemble to deliver cargo that modulates cell behavior or be maintained as synthetic membraneless organelles. The team will design new chemistries that will facilitate passage across cell membranes, and molecular switches to sequester and release protein therapeutics. If successful, this approach could be used to deliver a wide range of macromolecule drugs to cells.

Towards an Artificial Muscle Replacement for Facial Reanimation

Cynthia Sung, Gabel Family Term Assistant Professor in Mechanical Engineering and Applied Mechanics and Computer Information Science, will lead a research team including Flavia Vitale, Assistant Professor of Neurology and Bioengineering, and Niv Milbar, Assistant Instructor in Surgery in the Perelman School of Medicine. The team will develop and validate an electrically driven actuator to restore basic muscle responses in patients with partial facial paralysis, which can occur after a stroke or injury. The research will combine elements of robotics and biology, and aims to produce a device that can be clinically tested.

“These novel ideas are a great way to kick off the activities of the center,” says Hammer. “We look forward to soliciting other exciting seed proposals over the next several years.”

This article originally appeared in Penn Engineering Today.

A Novel Method for Monitoring the ‘Engine’ of Pregnancy

Combining optical measurements with ultrasound, an interdisciplinary team from the School of Arts & Sciences, Perelman School of Medicine, and CHOP developed a device to better measure blood flow and oxygenation in the placenta. (Image: Lin Wang)

A study published in Nature Biomedical Engineering details a novel method for imaging the placenta in pregnant patients as well as the results of a pilot clinical study. By combining optical measurements with ultrasound, the findings show how oxygen levels can be monitored noninvasively and provides a new way to generate a better understanding of this complex, crucial organ. This research was the result of a collaboration of the groups of the University of Pennsylvania’s Arjun Yodh and Nadav Schwartz with colleagues from the Children’s Hospital of Philadelphia (CHOP) and was led by postdoc Lin Wang.

Schwartz describes the placenta as the “engine” of pregnancy, an organ that plays a crucial role in delivering nutrients and oxygen to the fetus. Placental dysfunction can lead to complications such as fetal growth restriction, preeclampsia, and stillbirth. To increase knowledge about this crucial organ, the National Institute of Child Health and Human Development launched the Human Placenta Project in 2014. One focus of the program is to develop tools to assess human placental structure and function in real time, including optical devices.

For three years, the researchers optimized the design of their instrument and tested it in preclinical settings. The process involved integrating optical fibers with ultrasound probes, exploring various ultrasound transducers, and improving the multimodal technology so that measurements were stable, accurate, and reproducible while collecting data at the bedside. The resulting instrumentation now enables researchers to study the anatomy of the placenta while also collecting detailed functional information about placenta blood flow and oxygenation, capabilities that existing commercially devices do not have, the researchers say.

Because the placenta is located far below the body’s surface, one of the key technical challenges addressed by Wang, a postdoc in Yodh’s lab, was reducing background noise in the opto-electronic system. Light is scattered and absorbed when it travels through thick tissues, Yodh says, and the key for success was to reduce background interference so that the small amount of light that penetrates deep into the placenta and then returns is still large enough for a high-quality measurement.

“We’re sending a light signal that goes through the same deep tissues as the ultrasound. The extremely small amount of light that returns to the surface probe is then used to accurately assess tissue properties, which is only possible with very stable lasers, optics, and detectors,” says Yodh. “Lin had to overcome many barriers to improve the signal-to-noise ratio to the point where we trusted our data.”

Read the full story in Penn Today.

The authors are Lin Wang, Jeffrey M. Cochran, Kenneth Abramson, Lian He, Venki Kavuri, Samuel Parry, Arjun G. Yodh, and Nadav Schwartz from Penn; Tiffany Ko, Wesley B. Baker, and Rebecca L. Linn from the Children’s Hospital of Philadelphia, and David R. Busch, previously a research associate at Penn and now at the University of Texas Southwestern Medical School.

Arjun Yodh is the James M. Skinner Professor of Science in the Department of Physics and Astronomy in the School of Arts & Sciences at the University of Pennsylvania. He is a member of the Penn Bioengineering Graduate Group.

Nadav Schwartz is an Associate Professor in the Department of Obstetrics and Gynecology in Penn’s Perelman School of Medicine.

Lin Wang is a postdoc in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences.

This research was supported by National Institutes of Health grants F31HD085731, R01NS113945, R01NS060653, P41EB015893, P41EB015893, T32HL007915, and U01HD087180.

Deconstructing the Mechanics of Bone Marrow Disease

by Katherine Unger Baillie

Acollaborative team developed an alginate-based hydrogel system that mimics the viscoelasticity of the natural extracellular matrix in bone marrow. By tweaking the balance between elastic and viscous properties in these artificial ECMs, they could recapitulate the viscoelasticity of healthy and scarred fibrotic bone marrow, and study the effects on human monocytes placed into these artificial ECMs. (Image: Adam Graham/Harvard CNS/Wyss Institute at Harvard University)

Fibrosis is the thickening of various tissues caused by the deposition of fibrillar extracellular matrix (ECM) in tissues and organs as part of the body’s wound healing response to various forms of damage. When accompanied by chronic inflammation, fibrosis can go into overdrive and produce excess scar tissue that can no longer be degraded. This process causes many diseases in multiple organs, including lung fibrosis induced by smoking or asbestos, liver fibrosis induced by alcohol abuse, and heart fibrosis often following heart attacks. Fibrosis can also occur in the bone marrow, the spongy tissue inside some bones that houses blood-producing hematopoietic stem cells (HSCs) and can lead to scarring and the disruption of normal functions.

Chronic blood cancers known as “myeloproliferative neoplasms” (MPNs) are one example, in which patients can develop fibrotic bone marrow, or myelofibrosis, that disrupts the normal production of blood cells. Monocytes, a type of white blood cell belonging to the group of myeloid cells, are overproduced from HSCs in neoplasms and contribute to the inflammation in the bone marrow environment, or niche. However, how the fibrotic bone marrow niche itself impacts the function of monocytes and inflammation in the bone marrow was unknown.

Now, a collaborative team from PennHarvard, the Dana-Farber Cancer Institute (DFCI), and Brigham and Women’s Hospital has created a programmable hydrogel-based in vitro model mimicking healthy and fibrotic human bone marrow. Combining this system with mouse in vivo models of myelofibrosis, the researchers demonstrated that monocytes decide whether to enter a pro-inflammatory state and go on to differentiate into inflammatory dendritic cells based on specific mechanical properties of the bone marrow niche with its densely packed ECM molecules. Importantly, the team found a drug that could tone down these pathological mechanical effects on monocytes, reducing their numbers as well as the numbers of inflammatory myeloid cells in mice with myelofibrosis. The findings are published in Nature Materials.

“We found that stiff and more elastic slow-relaxing artificial ECMs induced immature monocytes to differentiate into monocytes with a pro-inflammatory program strongly resembling that of monocytes in myelofibrosis patients, and the monocytes to differentiate further into inflammatory dendritic cells,” says co-first author Kyle Vining, who recently joined Penn’s School of Dental Medicine and School of Engineering and Applied Science as an assistant professor of preventive and restorative sciences. “More viscous fast-relaxing artificial ECMs suppressed this myelofibrosis-like effect on monocytes. This opened up the possibility of a mechanical checkpoint that could be disrupted in myelofibrotic bone marrow and also may be at play in other fibrotic diseases.”

Vining worked on the study as a postdoctoral fellow at Harvard in the lab of David Mooney. “Our study shows that the differentiation state of monocytes, which are key players in the immune system, is highly regulated by mechanical changes in the ECM they encounter,” says Mooney, who co-led the study with DFCI researcher Kai Wucherpfennig. “Specifically, the ECM’s viscoelasticity has been a historically under-appreciated aspect of its mechanical properties that we find correlates strongly between our in vitro and the in vivo models and human disease. It turns out that myelofibrosis is a mechano-related disease that could be treated by interfering with the mechanical signaling in bone marrow cells.”

Continue reading at Penn Today

Brian Litt Receives Landis Award for Outstanding Mentorship

Brian Litt, MD

Brian Litt, MD, Professor in Neurology, Neurosurgery and Bioengineering and Director of the Penn Epilepsy Center, has received a 2022 Landis Award for Outstanding Mentorship from the National Institute of Neurological Disorders and Stroke (NINDS). This award honors Litt’s dedication to superior mentorship and training in neuroscience research. The award includes $100,000 in the form of a supplement to an existing NINDS grant to support his efforts to foster the career advancement of additional trainees.

Read the announcement in Penn Medicine News.

Center for Innovation & Precision Dentistry Welcomes Inaugural Class to Training Program

The inaugural class of the CiPD NIDCR T90/R90 Postdoctoral Training Program Fellows with Dean Mark Wolff (center); Dr. Michel Koo, Founding Director of CiPD (far right); and CiPD Co-Director Dr. Kathleen Stebe of Penn’s School of Engineering and Applied Science (far left).

With one of its key missions to develop a new generation of scientists at the interface of dental medicine and engineering, the Center for Innovation & Precision Dentistry (CiPD) has selected its inaugural class of fellows for its new postdoctoral training program.

The CiPD was awarded a $2.5 million T90/R90 grant from the National Institute of Dental and Craniofacial Research (NIDCR) last summer to establish the program, recently naming this first cohort of fellows that includes Justin Burrell,  Marshall Padilla,  Zhi Ren, and Dennis Sourvanos.

“We’re hoping this program will promote cross-pollination and create a culture between these two fields to help dentists develop innovative strategies with engineers,” says Penn Dental Medicine’s Michel Koo, Co-Director of CiPD, who launched the Center in 2021 with Co-Director Kathleen Stebe, Richer & Elizabeth Goodwin Professor in Penn Engineering’s Department of Chemical and Biomolecular Engineering. “Dentists can learn from engineering principles and tools, and engineers can understand more about the needs of the dental and craniofacial fields. We’re providing a platform for them to work together to address unmet clinical needs and develop careers in that interface.”

The NIDCR T90/R90 Postdoctoral Training Program aims to specifically focus on the oral microbiome, host immunity, and tissue regeneration, each of which ties into different aspects of oral health, from tooth decay and periodontal disease to the needs of head and neck cancer patients. To advance these areas, emerging approaches, from advanced materials, robotics, and artificial intelligence to tissue engineering, chloroplast- and nanoparticle-based technologies, will be leveraged.

As part of the two-year training, each postdoc will receive co-mentorship from faculty from each school in conjunction with a career development committee of clinicians, basic scientists, as well as engineers. These mentorships will be focused on research outcomes and readying participants to submit grants and compete for positions in academia or industry.

The inaugural class of fellows includes Justin Burrell, a postdoctoral student in the lab of D. Kacy Cullen, Associate Professor of Neurosurgery; Marshall Padilla, a postdoc in the lab of Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering; and Zhi Ren, a postdoc in the lab of Michael Koo; and Dennis Sourvanos, an Advanced Graduate Dental Education resident at Penn Dental Medicine whose research has been co-directed by Timothy C. Zhu, Professor of Radiation Oncology in the Perelman School of Medicine. Cullen, Mitchell, Koo and Zhu are all members of the Penn Bioengineering Graduate Group.

Read more about the inaugural class of postdocs at Penn Dental Medicine News

Kevin Johnson: Informatics Evangelist

by Ebonee Johnson

Kevin Johnson is used to forging his own path in the fields of healthcare and computer science.

A picture of Johnson as a child, from his children’s book “I’m a Biomedical Expert Now!”

If you ask him to locate his niche within these fields, Johnson, David L. Cohen and Penn Integrates Knowledge (PIK) Professor with appointments in Penn Engineering and the Perelman School of Medicine, would say “informatics.” But that doesn’t tell the whole story of the board-certified pediatrician, who has dedicated his career to innovations in how patients’ information is created, documented and shared, all with the goal of improving the quality of healthcare they receive.

Informatics, the study of the structure and behavior of interactions between natural and computational systems, is an umbrella term. Within it, there’s bioinformatics, which applies informatics to biology, and biomedical informatics, which looks at those interactions in the context of healthcare systems. Finally, there is clinical informatics, which further focuses on the settings where healthcare is delivered, and where Johnson squarely places himself.

“But you can just call it ‘informatics,’” says Johnson. “It will be easier.”

He mainly studies how computational systems can improve ambulatory care — sometimes known as outpatient care, or the kind of care hospitals give to patients without admitting them — in real time. If you’ve ever heard your doctor complain about the amount of time it takes them to input the information they get from you during your visit, or wondered why they need to capture this information during the visit in the first place, these are some of the questions Johnson is investigating.

“We’re taking care of patients but we’re getting frustrated by things that we thought these new computers should be able to fix,” says Johnson.” I think there’s a very compelling case for using engineering principles to reimagine electronic health records.”

Read the full story in Penn Engineering Today.

Kevin Johnson is the David L. Cohen University of Pennsylvania Professor in the Departments of Biostatistics, Epidemiology and Informatics and Computer and Information Science. As a Penn Integrates Knowlegde (PIK) University Professor, Johnson also holds appointments in the Departments of Bioengineering and Pediatrics, as well as in the Annenberg School of Communication. Johnson is the Vice President for Applied Informatics for the University of Pennsylvania Health System and has been elected to the American College of Medical Informatics (2004), the Academic Pediatric Society (2010), the National Academy of Medicine (Institute of Medicine) (2010), and the International Association of Health Science Informatics (2021).

Kevin Johnson Named AIMBE Fellow

Kevin B. Johnson, MD, MS

Kevin B. Johnson, David L. Cohen University Professor in Biostatistics, Epidemiology and Informatics and in Computer and Information Science, has been elected to the 2022 Class of the American Institute for Medical and Biological Engineering (AIMBE) Fellows. Johnson joined the Penn faculty in 2021. He also holds secondary appointments in Bioengineering, in Pediatrics, and in the Annenberg School for Communication, and is the Vice President for Applied Informatics for the University of Pennsylvania Health System.

Election to the AIMBE College of Fellows is among the highest professional distinctions accorded to a medical and biological engineer. College membership honors those who have made outstanding contributions to “engineering and medicine research, practice, or education” and to “the pioneering of new and developing fields of technology, making major advancements in traditional fields of medical and biological engineering, or developing/implementing innovative approaches to bioengineering education.”

Johnson was nominated, reviewed, and elected by peers and members of the AIMBE College of Fellows for his pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.

A formal induction ceremony was held during AIMBE’s 2022 Annual Event on March 25, 2022. Johnson was inducted along with 152 colleagues who make up the AIMBE Fellow Class of 2022. For more information about the AIMBE Annual Event, please visit www.aimbe.org.

Read Johnson’s AIMBE election press release here. Find the full list of 2022 Fellows here.

Bioengineering Graduate Student Hannah Zlotnick Named Schmidt Science Fellow

by Evan Lerner

Hannah Zlotnick

Hannah Zlotnick, a graduate student in the Department of Bioengineering and a member of the McKay Orthopaedic Research Laboratory in Penn’s Perelman School of Medicine, has been named a Schmidt Science Fellow.

She joins 28 early-career scientists from around the world in this year’s cohort, with each receiving support for one to two years, $100,000 in salary support per year, individualized mentoring, and a series of professional development sessions as they pivot to the next stages of their research agendas.

The fellowship is a program of Schmidt Futures, the philanthropic initiative of Eric and Wendy Schmidt that aims to tackle society’s toughest challenges by supporting interdisciplinary researchers at the start of their careers.

“Our latest group of Schmidt Science Fellows embodies our vision for this Program at its inception five years ago,” says Eric Schmidt, co-founder of Schmidt Futures and former CEO and Chairman of Google. “We find the most talented next-generation leaders from around the world and back these impressive young adults with the resources and networks they need to realize their full potential while addressing some of the big scientific questions facing the world. Congratulations to the 2022 Schmidt Science Fellows, I am excited to see where your science takes you and what you will achieve.”

Working at the intersection of materials science, biology, and applied clinical research, Zlotnick’s postdoctoral work will involve developing advanced bioprinting techniques for regenerative medicine. Such advances are necessary to recreate the multi-cellular composition of orthopedic tissues, such as those found in the knee joint. Lab-grown tissue models can then be used to broaden our understanding of how degenerative diseases progress after injury, limit the need for animal models, and serve as a platform for therapeutic discovery.

Read the full story in Penn Engineering Today.

FDA Approves Penn Pioneered CAR T Cell Therapy for Third Indication

The U.S. Food and Drug Administration has expanded its approval for Kymriah, a personalized cellular therapy developed at the Abramson Cancer Center, this time for the treatment of adults with relapsed/refractory follicular lymphoma who have received at least two lines of systemic therapy. “Patients with follicular lymphoma who relapse or don’t respond to treatment have a poor prognosis and may face a series of treatment options without a meaningful, lasting response,” said Stephen J. Schuster, the Robert and Margarita Louis-Dreyfus Professor in Chronic Lymphocytic Leukemia and Lymphoma in the Division of Hematology Oncology. It’s the third FDA approval for the “living drug,” which was the first of its kind to be approved, in 2017, and remains the only CAR T cell therapy approved for both adult and pediatric patients.

“In just over a decade, we have moved from treating the very first patients with CAR T cell therapy and seeing them live healthy lives beyond cancer to having three FDA-approved uses of these living drugs which have helped thousands of patients across the globe,” said Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in Penn’s Perelman School of Medicine and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center and director of the Parker Institute for Cancer Immunotherapy at Penn. “Today’s news is new fuel for our work to define the future of cell therapy and set new standards in harnessing the immune system to treat cancer.”

Research from June, a member of the Penn Bioengineering Graduate Group, led to the initial FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Read the full announcement in Penn Medicine News.

Streamlining the Health Care Supply Chain

William Danon and Luka Yancopoulos, winners of the 2022 President’s Innovation Prize, will offer a software solution to make the health care supply chain more efficient.

by Brandon Baker

William Danon and Luka Yancopoulos pose in front of College Hall in April 2022. They are co-founders of Grapevine and the winners of the 2022 President’s Innovation Prize.

William Danon and Luka Yancopoulos are best friends. They’re also business partners.

The duo, who received this year’s President’s Innovation Prize (PIP) for Grapevine, met during sophomore year, connected through Yancopoulos’ roommate. As time went on, they did everything together: cooked meals, played basketball, and read and discussed fantasy novels.

“We spent a lot of time together,” Danon says.

It was only natural, then, that when the time came to start an actual venture, they’d do it together.

“They’re like brothers, in a very good way,” says mentor David Meaney of the School of Engineering and Applied Science, who describes their working dynamic as “complementary.” “I think that will serve them well. Most of what we do in faculty is collaborative, and I see elements of that in their partnership. I give them credit for stepping out and doing something unusual and keeping at it.”

How Grapevine came to be

Grapevine is a software solution and professional networking platform that connects small-to-medium-size players in the health care supply chain. It’s a sort of two-pronged solution: It helps institutions like hospital systems connect disjointed operations like procurement and inventory management internally, but also serves as a glue between these institutions and purveyors of medical equipment.

“William and Luka are impact-driven entrepreneurs whose collaborative synergies will take them far,” says Penn Interim President Wendell Pritchett. “The software provided by Grapevine is poised to reinvent how the health care industry buys and sells medical supplies and services and, truly, could not come at a timelier moment.”

The company is the evolution of a project they began at the onset of the COVID-19 pandemic, called Pandemic Relief Supply, which delivered $20 million of health care supplies to frontline workers.

“My mom was a nurse practitioner at New York Presbyterian Hospital, the largest hospital in the United States, and she was coming home with horror stories,” recalls Yancopoulos. “In surgery or the ER, a surgeon had to put on a garbage bag because they didn’t have a gown. And they gave her one mask to use for the rest of the month, and I’m seeing on the news, ‘Don’t wear a mask for more than three days.’”

This is where Yancopoulos and Danon first developed an interest in the health care supply chain. Using a database Penn allows students access to that maps the import of any good in the country, they did keyword matching to identify instreams of different goods and handed off findings to New York Presbyterian procurement staff. When McKesson, the largest provider of health care products and services in the U.S., took notice of what they were doing and reached out, they realized they were onto something. In response to their success, they started a company called Pandemic Relief Supply to distribute reliable medical supplies, including items like medical-grade masks and gloves, to frontline workers in the healthcare space.

As time passed, that project evolved into something larger: Grapevine.

A mock-up screenshot of a business profile on the Grapevine professional networking platform. (Image: William Danon)

In short, Grapevine’s software creates a professional networking platform to resolve miscommunications between suppliers and buyers, as well as adds a layer of transparency between interactants. Suppliers on the platform display real-time data about their inventory and shipping process, with timestamps; this prohibits companies from cherry-picking data or making false claims and creates a more health-care-supply-specific space for companies to interact than, say, LinkedIn.

“Primarily, the first step is we want people to use it internally, and streamline operations, and then through that centralized operational data, you can push that externally and that’s where [Grapevine] becomes a connector,” explains Danon. “Because when you’re choosing to connect with someone, the reason you can do so way more efficiently or quickly, is that data is actual operational data.”

To accomplish this level of transparency, the beginnings of Grapevine involved lots of legwork. Last year, the duo moved to Los Angeles to take stock of what suppliers existed where, and how reliable they were. They realized that many suppliers existed around Los Angeles because of port access; many medical supplies are imported from Asia. Their time in LA made the problem feel even more tangible, they agree.

“We were able to see people were doing outdated processes—manual processes—because there’s no other option,” Danon says. “So, we said, ‘Let’s get out there and do some work to be digital and technologically innovative.”

Read the full story in Penn Today.

N.B.: Yancopolous’s senior design team created “Harvest” for their capstone project in Bioengineering, building on the existing Grapevine software package. Read Harvest’s abstract and view their final presentation on the BE Labs website.