While the majority of courses remained online this spring, a small number of lab-based undergraduate courses were able to resume limited in-person instruction. One course was BE 310, the second semester of the Bioengineering Modeling, Analysis, and Design lab sequence. Better known as BE-MAD, this junior-year bioengineering course was able to bring students back to the teaching lab safely this spring while adapting its curriculum to keep remote learners engaged with hands-on lab modules at home.
An Essential Step Towards Becoming a Bioengineer
After learning the basics of chemistry, physics, biology, and math during freshman year and studying bioengineering fundamentals throughout sophomore year, BE-MAD is designed to provide essential hands-on experience to bioengineering majors during their junior years. In BE-MAD, students integrate what they’ve learned so far in the classroom to addressing complex, real-world problems by breaking down the silos that exist across different STEM fields.
“Usually what we hear from students is that this BE 309/310 sequence is when they really feel like they are engineers,” says Brian Chow, one of the BE 310 instructors. “They can put what they learn in classes to work in some practical setting and applied context.”
BE-MAD is also an important course to prepare students for senior design and is designed to be a “safe space to fail,” allowing students to build confidence through trial and error within a supportive environment, explains Sevile G. Mannickarottu, director of the educational laboratories. “We’re trying to build skills needed for senior year as well as teaching students how to think critically about problems by pulling together the materials they’ve learned all in one place,” he says. “By senior year, we want them to, when presented with a problem, not be afraid.”
Adapting BE-MAD for Both Remote and Hybrid Instruction
Traditionally, the BE-MAD lab is taught in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary bioengineering teaching lab, and includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis, and spectroscopy. In the fall, the first lab in the series (BE-309) pivoted to remote learning using video tutorials of lab experiments and providing real data to students for analysis.
This spring, with more aspects of on-campus life able to reopen, the Educational Laboratory staff and BE-MAD instructors developed protocols in collaboration with David Meaney, Penn Engineering senior associate dean and an instructor for BE 309, and Penn’s Environmental Health and Radiation Safety office to safely reopen the teaching lab and Bio-MakerSpace for both BE-310 and for bioengineering senior design students.
To continue to meet the needs of remote students, BE 310 instructor Lukasz Bugaj says that the curriculum was adapted to be two parallel courses—one that could be done entirely at home and the other in-person. The challenge was to adjust the content so that it could be completed either in-person or virtually, and could be switched from in-person to virtual at a moment’s notice because of COVID precautions, all while maximizing the hands-on experience, says Bugaj. “That’s a real credit to the lab staff of Sevile and Michael Patterson, who put a lot of work into revamping this entire class.”
The Lindback Awards, announced annually, are the most prestigious teaching awards that full-time faculty members at the University can receive.
Meaney is the Solomon R. Pollack Professor in Bioengineering and Senior Associate Dean of Penn Engineering and his research areas span from traumatic brain injury to brain network theory. He received his M.S. and Ph.D. in Bioengineering and Biomedical Engineering from Penn Engineering.
Lamis Elsawah graduated with a B.S.E. in Bioengineering with a concentration in Medical Devices in 2019. She is currently a Design Engineer at Johnson & Johnson’s DePuy Synthes. We caught up with Lamis to hear about why she chose Penn Bioengineering and what she enjoyed about the curriculum.
“Penn had been my dream school for years prior to even applying to college, so their having a top notch bioengineering program was icing on the cake when it was time for me to apply. Prior to applying, I actually had the opportunity to meet with Dr. Meaney (who was the Bioengineering Department Chair up until I graduated) the summer before my senior year in high school and he was always a constant support throughout my bioengineering education up until graduation. Since Bioengineering had less than 100 students per class, it really allowed us to develop that familial feel with our core Bioengineering professors and lab staff. I honestly don’t think I would have survived junior and senior year without the help of Sevile and the entire lab staff, so I will be forever grateful.
I always like to say that junior year labs are really what made me an engineer. Those were some of the most challenging classes I took, but it was really rewarding once I reached the end. Between those lab courses and Biomechatronics taught by Professor Dourte, it prepared me to become a design engineer and apply all that I had learned. I also had the opportunity to get my minor in Engineering Entrepreneurship and be taught by Professor Cassel, which increased my interest in the business side of developing medical devices. The combination of my studies ultimately led me to Imperial College, London where I received my Master’s in Medical Device Design and Entrepreneurship.
The bioengineering curriculum at Penn allowed me to have a vast knowledge of the field that I will always be grateful for. It not only provided me with the mechanical experience, but also the electrical and biological background. I plan on staying an active alumna in both the Engineering Alumni Society and the Penn Alumni Board as a result of my wonderful experience at Penn Engineering and Penn as a whole.”
This post is part of BE’s Alumni Spotlight series. Read more testimonies from BE Alumni on the BE website.
A new series of short videos on the BE Labs Youtube Channel highlights the unique and innovative approach to engineering education found in The George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering at Penn Engineering. This video series explores how “engineering is fundamentally interdisciplinary” and demonstrates the ways in which Penn students from Bioengineering and beyond have combined the fields of biology, chemistry, and electrical, mechanical, and materials engineering into one exciting and dynamic “MakerSpace.”
“Our Bio-MakerSpace” takes viewers on a tour inside BE’s one-of-a-kind educational laboratories.
Produced primarily on smart phones and with equipment borrowed from the Penn Libraries, and software provided by Computing and Educational Technology Services, the videos were made by rising Bioengineering junior Nicole Wojnowski (BAS ‘22). Nicole works on staff as a student employee of the BE Labs and as a student researcher in the Gottardi Lab at the Children’s Hospital of Philadelphia (CHOP), helmed by Assistant Professor of Pediatrics Riccardo Gottardi.
Sevile Mannickarottu, Director of the Educational Labs in Bioengineering, says that the philosophy of the Bio-MakerSpace “encourages a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout Penn. We are the only open Bio-MakerSpace with biological, chemical, electrical, materials, and mechanical testing and fabrication facilities, all in one place, anywhere.”
Previous stories on the BE blog have gone into detail about how BE’s Bio-MakerSpace has become a hub for start-ups in recent years, how students can build their own makerspace for under $1500, and more. Major award-winning start-ups including Strella Biotechnology and InstaHub got their start in the BE Labs.
To learn more about the Bio-MakerSpace, check out the other videos below.
Bioengineering doctoral student Dayo Adewole co-founded the company Instahub, which also took home a PIP award in 2019. Dayo also graduated from the BE undergraduate program in 2014. In this video, he discusses the helpfulness and expertise of the BE Labs staff.
Senior Associate Dean for Penn Engineering and Solomon R. Pollack Professor in Bioengineering David Meaney discusses how the Bio-MakerSpace is the only educational lab on campus to provide “all of the components that one would need to make the kinds of systems that bioengineers make.”
David F. Meaney, the Senior Associate Dean of Penn Engineering and Solomon R. Pollack Professor of Bioengineering, is known for his scholarship and innovation in neuroengineering and concussion science, his leadership as former Chair of the Department of Bioengineering, and for his marshaling of interdisciplinary research between Penn Engineering and the University’s health schools.
The Penn Engineering community has sprung into action over the course of the past few weeks in response to COVID-19. Meaney shared his perspective on those efforts and the ones that will come online as the pandemic continues to unfold.
And then our campus — and world — changed.
COVID-19 is among us, in ways that we can’t exactly measure. It is among us in ways that we feel — we probably know someone that has tested positive for the virus, and others that are living with someone that is sick. And we all realize the virus will be with us for some time; the exact amount we don’t know.
Which brings up the question — what can we do to fight this pandemic? Many of us are trying to find ways to keep our connections with others vibrant and strong in the world of Zoom, Hangout, and BlueJeans. That is important. Let me also say that I can’t wait to reconnect with everyone in person, and close my laptop for a week.
But staying connected is what everyone should do. I often think about what can engineers do?
As the Senior Associate Dean, I want to let you know what I’m seeing on a quiet, but not shuttered, Penn campus. Examples of our response to the pandemic include our faculty designing personal protective equipment for health care workers, and our students, faculty and staff volunteering to assemble it. Other faculty are inventing COVID-19 test kits that can be completed at home, with the results available in less than an hour. Professors are sharing their creative mask designs with the world, for free, to make sure that we can all feel comfortable walking outside. And yet others that are collaborating to make a vaccine that will help us put COVID-19 behind us, permanently.
All of this is happening at speeds we have never seen before. Ideas move to prototypes and testing in days, not months, and to product in a week. We are not alone — our colleagues across campus are working at light speed to generate better tests, treatments, and models to fight COVID-19. This time, Nature has given us the problem. Time for us to solve it.
A message from Penn Bioengineering Professor and Chair Ravi Radhakrishnan:
In response to the unprecedented challenges presented by the global outbreak of the novel coronavirus SARS-CoV-2, Penn Bioengineering’s faculty, students, and staff are finding innovative ways of pivoting their research and academic projects to contribute to the fight against COVID-19. Though these projects are all works in progress, I think it is vitally important to keep those in our broader communities informed of the critical contributions our people are making. Whether adapting current research to focus on COVID-19, investing time, technology, and equipment to help health care infrastructure, or creating new outreach and educational programs for students, I am incredibly proud of the way Penn Bioengineering is making a difference. I invite you to read more about our ongoing projects below.
RESEARCH
Novel Chest X-Ray Contrast
David Cormode, Associate Professor of Radiology and Bioengineering
The Cormode and Noel labs are working to develop dark-field X-ray imaging, which may prove very helpful for COVID patients. It involves fabricating diffusers that incorporate gold nanoparticles to modify the X-ray beam. This method gives excellent images of lung structure. Chest X-ray is being used on the front lines for COVID patients, and this could potentially be an easy to implement modification of existing X-ray systems. The additional data give insight into the health state of the microstructures (alveoli) in the lung. This new contrast mechanics could be an early insight into the disease status of COVID-19 patients. For more on this research, see Cormode and Noel’s chapter in the forthcoming volume Spectral, Photon Counting Computed Tomography: Technology and Applications, edited by Katsuyuki Taguchi, Ira Blevis, and Krzysztof Iniewski (Routledge 2020).
Immunotherapy
Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Bioengineering
Mike Mitchell is working with Saar Gill (Penn Medicine) on engineering drug delivery technologies for COVID-19 mRNA vaccination. He is also developing inhalable drug delivery technologies to block COVID-19 internalization into the lungs. These new technologies are adaptations of prior research published Volume 20 of Nano Letters (“Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering” January 2020) and discussed in Volume 18 of Nature Reviews Drug Discovery (“Delivery Technologies for Cancer Immunotherapy” January 2019).
Respiratory Distress Therapy Modeling
Ravi Radhakrishnan, Professor, and Chair of Bioengineering and Professor of Chemical and Biomolecular Engineering
Computational Models for Targeting Acute Respiratory Distress Syndrome (ARDS). The severe forms of COVID-19 infections resulting in death proceeds by the propagation of the acute respiratory distress syndrome or ARDS. In ARDS, the lungs fill up with fluid preventing oxygenation and effective delivery of therapeutics through the inhalation route. To overcome this major limitation, delivery of antiinflammatory drugs through the vasculature (IV injection) is a better approach; however, the high injected dose required can lead to toxicity. A group of undergraduate and postdoctoral researchers in the Radhakrishnan Lab (Emma Glass, Christina Eng, Samaneh Farokhirad, and Sreeja Kandy) are developing a computational model that can design drug-filled nanoparticles and target them to the inflamed lung regions. The model combines different length-scales, (namely, pharmacodynamic factors at the organ scale, hydrodynamic and transport factors in the tissue scale, and nanoparticle-cell interaction at the subcellular scale), into one integrated framework. This targeted approach can significantly decrease the required dose for combating ARDS. This project is done in collaboration with Clinical Scientist Dr. Jacob Brenner, who is an attending ER Physician in Penn Medicine. This research is adapted from prior findings published in Volume 13, Issue 4 of Nanomedicine: Nanotechnology, Biology and Medicine: “Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions” (May 2017).
Diagnostics
Sydney Shaffer, Assistant Professor of Bioengineering and Pathology and Laboratory Medicine
Arjun Raj, David Issadore, and Sydney Shaffer are working on developing an integrated, rapid point-of-care diagnostic for SARS-CoV-2 using single molecule RNA FISH. The platform currently in development uses sequence specific fluorescent probes that bind to the viral RNA when it is present. The fluorescent probes are detected using a iPhone compatible point-of-care reader device that determines whether the specimen is infected or uninfected. As the entire assay takes less than 10 minutes and can be performed with minimal equipment, we envision that this platform could ultimately be used for screening for active COVID19 at doctors’ offices and testing sites. Support for this project will come from a recently-announced IRM Collaborative Research Grant from the Institute of Regenerative Medicine with matching funding provided by the Departments of Bioengineering and Pathology and Laboratory Medicine in the Perelman School of Medicine (PSOM) (PI’s: Sydney Shaffer, Sara Cherry, Ophir Shalem, Arjun Raj). This research is adapted from findings published in the journal Lab on a Chip: “Multiplexed detection of viral infections using rapid in situ RNA analysis on a chip” (Issue 15, 2015). See also United States Provisional Patent Application Serial No. 14/900,494 (2014): “Methods for rapid ribonucleic acid fluorescence in situ hybridization” (Inventors: Raj A., Shaffer S.M., Issadore D.).
HEALTH CARE INFRASTRUCTURE
Penn Health-Tech Coronavirus COVID-19 Collaborations
Brian Litt, Professor of Bioengineering, Neurology, and Neurosurgery
In his role as one of the faculty directors for Penn Health-Tech, Professor Brian Litt is working closely with me to facilitate all the rapid response team initiatives, and in helping to garner support the center and remove obstacles. These projects include ramping up ventilator capacity and fabrication of ventilator parts, the creation of point-of-care ultrasounds and diagnostic testing, evaluating processes of PPE decontamination, and more. Visit the Penn Health-Tech coronavirus website to learn more, get involved with an existing team, or submit a new idea.
BE Educational Labs staff members Dana Abulez (BE ’19, Master’s BE ’20) and Matthew Zwimpfer (MSE ’18, Master’s MSE ’19) take shifts to laser-cut face shields.
The George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace staff have donated their PPE to Penn Medicine. Two staff members (Dana Abulez, BE ’19, Master’s BE ’20 and Matthew Zwimpfer, MSE ’18, Master’s MSE ’19) took shifts to laser-cut face shields in collaboration with Penn Health-Tech. Dana and Matthew are also working with Dr. Matthew Maltese on his low-cost ventilator project (details below).
Low-Cost Ventilator
Matthew Maltese, Adjunct Professor of Medical Devices and BE Graduate Group Member
Dr. Maltese is rapidly developing a low-cost ventilator that could be deployed in Penn Medicine for the expected surge, and any surge in subsequent waves. This design is currently under consideration by the FDA for Emergency Use Authorization (EUA). This example is one of several designs considered by Penn Medicine in dealing with the patient surge.
Face Shields
David F. Meaney, Solomon R. Pollack Professor of Bioengineering and Senior Associate Dean
Led by David Meaney, Kevin Turner, Peter Bruno and Mark Yim, the face shield team at Penn Health-Tech is working on developing thousands of rapidly producible shields to protect and prolong the usage of Personal Protective Equipment (PPE). Learn more about Penn Health-Tech’s initiatives and apply to get involved here.
Update 4/29/20: The Penn Engineering community has sprung into action over the course of the past few weeks in response to COVID-19. Dr. Meaney shared his perspective on those efforts and the ones that will come online as the pandemic continues to unfold. Read the full post on the Penn Engineering blog.
OUTREACH & EDUCATION
Student Community Building
Yale Cohen, Professor of Otorhinolaryngology, Department of Psychology, BE Graduate Group Member, and BE Graduate Chair
Yale Cohen, and Penn Bioengineering’s Graduate Chair, is working with Penn faculty and peer institutions across the country to identify intellectually engaging and/or community-building activities for Bioengineering students. While those ideas are in progress, he has also worked with BE Department Chair Ravi Radhakrishnan and Undergraduate Chair Andrew Tsourkas to set up a dedicated Penn Bioengineering slack channel open to all Penn Bioengineering Undergrads, Master’s and Doctoral Students, and Postdocs as well as faculty and staff. It has already become an enjoyable place for the Penn BE community to connect and share ideas, articles, and funny memes.
Undergraduate Course: Biotechnology, Immunology, Vaccines and COVID-19 (ENGR 35)
Daniel A. Hammer, Alfred G. and Meta A. Ennis Professor of Bioengineering and Chemical and Biomolecular Engineering
This Summer Session II, Professor Dan Hammer and CBE Senior Lecturer Miriam R. Wattenbarger will teach a brand-new course introducing Penn undergraduates to a basic understanding of biological systems, immunology, viruses, and vaccines. This course will start with the fundamentals of biotechnology, and no prior knowledge of biotechnology is necessary. Some chemistry is needed to understand how biological systems work. The course will cover basic concepts in biotechnology, including DNA, RNA, the Central Dogma, proteins, recombinant DNA technology, polymerase chain reaction, DNA sequencing, the functioning of the immune system, acquired vs. innate immunity, viruses (including HIV, influenza, adenovirus, and coronavirus), gene therapy, CRISPR-Cas9 editing, drug discovery, types of pharmaceuticals (including small molecule inhibitors and monoclonal antibodies), vaccines, clinical trials. Some quantitative principles will be used to quantifying the strength of binding, calculate the dynamics of enzymes, writing and solving simple epidemiological models, methods for making and purifying drugs and vaccines. The course will end with specific case study of coronavirus pandemic, types of drugs proposed and their mechanism of action, and vaccine development.
Update 4/29/20: Read the Penn Engineering blog post on this course published April 27, 2020.
Neuromatch Conference
Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science
Dr. Kording facilitated Neuromatch 2020, a large virtual neurosciences conferences consisting of over 3,000 registrants. All of the conference talk videos are archived on the conference website and Dr. Kording has blogged about what he learned in the course of running a large conference entirely online. Based on the success of Neuromatch 1.0, the team are now working on planning Neuromatch 2.0, which will take place in May 2020. Dr. Kording is also working on facilitating the transition of neuroscience communication into the online space, including a weekly social (#neurodrinking) with both US and EU versions.
Neuromatch Academy
Konrad Kording, Penn Integrates Knowledge University Professor of Bioengineering, Neuroscience, and Computer and Information Science
Dr. Kording is working to launch the Neuromatch Academy, an open, online, 3-week intensive tutorial-based computational neuroscience training event (July 13-31, 2020). Participants from undergraduate to professors as well as industry are welcome. The Neuromatch Academy will introduce traditional and emerging computational neuroscience tools, their complementarity, and what they can tell us about the brain. A main focus is not just on using the techniques, but on understanding how they relate to biological questions. The school will be Python-based making use of Google Colab. The Academy will also include professional development / meta-science, model interpretation, and networking sessions. The goal is to give participants the computational background needed to do research in neuroscience. Interested participants can learn more and apply here.
Journal of Biomedical Engineering Call for Review Articles
Beth Winkelstein, Vice Provost for Education and Eduardo D. Glandt President’s Distinguished Professor of Bioengineering
The American Society of Medical Engineers’ (ASME) Journal of Biomechanical Engineering (JBME), of which Dr. Winkelstein is an Editor, has put out a call for review articles by trainees for a special issue of the journal. The call was made in March 2020 when many labs were ramping down, and trainees began refocusing on review articles and remote work. This call continues the JBME’s long history of supporting junior faculty and trainees and promoting their intellectual contributions during challenging times.
Update 4/29/20: CFP for the special 2021 issue here.
Are you a Penn Bioengineering community member involved in a coronavirus-related project? Let us know! Please reach out to ksas@seas.upenn.edu.
David F. Meaney, Solomon R. Pollack Professor of Bioengineering, has been named the Senior Associate Dean of Penn Engineering, effective January 1, 2020. This newly created leadership position will have oversight responsibilities in budget, space and infrastructure planning; facilities and research services; and will create and cultivate new interschool partnerships that will expand Penn Engineering’s footprint on campus.
Meaney is well known not only for his scholarship and innovation in neuroengineering and concussion science, but also for his leadership during his highly successful tenure as Chair of the Department of Bioengineering.
“Dave’s strong connections to the health schools will help strengthen Penn Engineering’s initiatives throughout campus,” says Vijay Kumar, Nemirovsky Family Dean of Penn Engineering. “He will have oversight of Penn Health-Tech, the Center for Engineering MechanoBiology and other efforts between engineering and the health schools, and Dave brings his unique creativity, energy and leadership experience to these collaborative efforts.”
Each spring, the School of Engineering and Applied Science at the University of Pennsylvania hosts an awards recognition dinner to honor exceptional work in the school: The Faculty honor students for outstanding service and academics, while the students choose faculty members for their commitment to teaching and advising. This year, the Department of Bioengineering won big with honors for both our Department Chair and our undergraduates. Read about each of the award winners and see photos from the awards ceremony below. Congratulations to all the winners!
David F. Meaney, Ph.D.
Dr. David F. Meaney, Solomon R. Pollack Professor and Chair of Bioengineering, was awarded with the Ford Motor Company Award for Faculty Advising, which recognizes “dedication to helping students realize their educational, career and personal goals.” Dr. Meaney is beloved by the students in BE for his engaging teaching style, his commitment to student wellness and advancement, as well as his weekly Penn Bioengineering spin classes, and so we are delighted to see him recognized in this way by the wider student body Read more about the award here and Dr. Meaney here.
Eshwar Inapuri (BAS 2019), a graduating senior completing his Bachelor of Applied Science degree in BE with minors in Biophysics and Chemistry, was awarded the Ben and Bertha Gomberg Kirsch Prize. This competitive award is decided by the SEAS faculty from among the Engineering undergraduate body and distinguishes a member of the B.A.S. senior class in who “in applying the flexibility of the program, has created a personal academic experience involving the most creative use of the resources of the University.”
The Hugo Otto Wolf Memorial Prize, awarded to one or more members of each department’s senior class, distinguishes students who meet with great approval of the professors at large through “thoroughness and originality” in their work. This year, BE chose to share the award between Ethan Zhao (BSE 2019) and Shelly Teng (BSE 2019).
The Herman P. Schwan Award is decided by the Bioengineering Department and honors a graduating senior who demonstrates the “highest standards of scholarship and academic achievement.” The 2019 recipient of the Schwan Award is Joseph Maggiore (BSE 2019).
Every year, four BE students are recognized with Exceptional Service Awards for their outstanding service to the University and their larger communities. Our winners this year are Dana Abulez (BSE 2019), Daphne Cheung (BSE 2019), Lamis Elsawah (BSE 2019), and Kayla Prezelski (BSE 2019). All four of these recipients are also currently in the Accelerated Master’s program in BE.
And finally, BE also awards a single lab group (four students) with the Albert Giandomenico Award which reflects their “teamwork, leadership, creativity, and knowledge applied to discovery-based learning in the laboratory.” This year’s group consists of Caroline Atkinson (BSE 2019), Shuting (Sarah) Cai (BSE 2019), Rebecca Kellner (BSE 2019), and Harrison Troche (BSE 2019).
A full list of SEAS award descriptions and recipients can be found here.
In the aftermath of the presidential election, quite a few experts cited the lack of economic opportunity for many as a primary factor that elevated Donald Trump to the presidency. These changes in economic opportunity did not occur months prior to the election, but they resulted from years of continual changes in the US economy.
For example, manufacturing represented more than 50% of the economic output and jobs after World War II; it now represents only 10% of the economy. Professional services — in finance, health, insurance, education, and similar industries — represented less than 5% of the economy in 1950, while it now captures almost 40% of the economy. Our country went from makers to providers. Many other workplace traditions have also changed; e.g., one often doesn’t work for the same employer for decades, nor do workers have confidence that they will remain in the career they start in their 20s. A physician could become a business owner and then (if we are lucky) a teacher. These changes are causing many of us to ask: What should we be teaching our students for this future?
First, let’s understand how economies can change. One theory in economics puts these job sector shifts as part of Kondriateff waves, which pass through the US economy in (roughly) 50- to 80-year cycles. These “K-waves” reach back to late 18th century and continue to the current day. The economist Joseph Schumpeter reasoned that these waves were triggered by technological revolutions; e.g., the invention of the steam engine and new steel production processes led to a K-wave from 1850 to 1900 that included the development of the railroad system, the settling of the American West, and the emergence of the American economy as a global force. Similarly, the widespread availability of consumer computer power and the invention of the Internet in the late 20th century created a K-wave that began in 1990 and is cresting now with the emergence of alternative media (e.g., cutting the digital cord with online media access), the Internet of Things, and the Big Data wave.
Where Engineers Fit In
As engineers, we are naturally attracted to the idea that technology starts the wave that affects everything else. But this belief raises a question: If technology triggers waves, then how can we predict where the next wave will start? And a second question follows: How do we organize and educate ourselves so that we make the most of these technologies so society can ride this wave effectively, rather than absorb the displacements these waves create? Well, we all know it is hard to predict the future. However, a recent report from the Brookings Institute helps us pinpoint areas of the economy that are most powerful in creating downstream economic output, whether it is additional jobs, more exports, or the forming of completely new industries. Given their potency, it is likely that new economic opportunities will emerge more frequently from this sector than any other.
Rather than using the traditional categorization scheme that breaks up the economy into bins associated with worker output (e.g., we manufacture, provide financial services, trade energy goods, supply food), the Brookings report asked a slightly different question: Which parts of the economy provide the downstream spark for the rest of us? If we understood the origin of this spark, we would be much more informed about how to make strategic investments that will have broad economic trickle-down effects on the national economy. The answer? The most potent part of our economy consists of the industries that invest heavily in research and development and contain a high percentage of employees with STEM degrees. The Brookings report termed these advanced industries. And this part of the economy is indeed potent. It generates 2.7 additional downstream jobs for every job in this sector, far outpacing the highly publicized downstream impact of the manufacturing sector (1.7 downstream jobs per manufacturing job). Advanced industries contain 8% of the workforce but generate 19% of the national GDP, and advanced industries span everything from communications, defense, and security to health, medicine, and the environment.
Creating Economic Opportunity Waves
Knowing that this is the proverbial spark certainly places a premium on educating scientists and engineers and placing them in these advanced industries. Some of them could become the next Elon Musk, a Penn alum (SAS ’97) whose vision will eventually electrify the entire fleet of motor vehicles in the US. Others could follow in the footsteps of Carl June, MD, a Penn faculty member who invented a radically new form of cancer immunotherapy that may be the biggest change in cancer treatment in several decades. But what can colleges and universities teach students today to make them thrive in the epicenters of these advanced industries? How can we teach so that our students are ahead of the curve and, in some cases, creating these curves?
We are constantly discussing the content of undergraduate and graduate education here at Penn. In these conversations, it is often easy to fall into the trap of saying “Well, I can’t imagine a degree in X not having a course in Y” or “If I had to learn X, then my students should learn X too.” I think we should step away from specific courses and distribution sequences for a moment and think about the core principles in an engineering education that will allow our graduates to successfully navigate any economic wave that falls across all of us. In the most successful form, we would educate people that successfully create waves to benefit everyone. I suggest focusing on three core principles in an undergraduate’s engineering education toward achieving this goal.
Introduce the uncertainty of researchto counterbalance the certainty of formal didactic instruction. For engineering, teaching the fundamentals makes the world a safer place, whether we are teaching safety factors, repeatability, or design standards. But the advanced industries are at the bleeding edge of uncovering knowledge not in textbooks. And this new knowledge eventually creates something useful and interesting. Yet there is always a major transition for students when they realize that technological advances never come from a script in a textbook. Many will ask, “How can I learn anything that isn’t known?” Historically, we would use undergraduate education to teach what is known, and graduate education to answer the unknown. But if creating new ideas in advanced industries requires one to determine some of the unknowns, we shouldn’t restrict research experiences to just graduate education anymore.
Research forces one to learn the inexact science of breaking down a complex problem into more manageable parts, finding out which of these parts is most critical in solving the problem, and the finding a solution. Research uses failure as a mechanism to learn, and teaches persistence and patience. These are good things to learn if you want to be in industries that are searching for the Next Big Idea. In many ways, research experiences resemble learning a foreign language — the first language (research experience) is a real bear, but they get easier as you learn more of them (additional experiences). Jumping across different fields would parallel the learning of more than one foreign language and would be a good primer for a career in the advanced industries. If more of us became comfortable with uncertainty and failure, we would accelerate the creation and filtering of new ideas and products, in turn creating more opportunities for everyone in the economy.
Teach invention, as it will continue to drive economic development. Over a decade ago, the American university system was recognized for its almost unique ability to educate students who would thrive as innovators over their careers. American higher education was sought after by students around the world, and world universities started to tweak their own models of education, inspired by the US success story. Much of what was written about the ‘secret sauce’ for American higher education was the magical ingredient of innovation that existed on college campuses in the US. However, we are overlooking the one critical ingredient upstream of innovation that makes the innovation engine go: inventing new ideas. So much activity surrounding innovation involves how to package ideas for marketplace needs or how to use marketplace needs to filter through existing technologies to create new products.Our science and engineering infrastructure is driven by inventing technologies and algorithms that appear years to decades later in innovative products. And we are sorely overlooking how to best educate to invent, e.g., the classroom environment that forms the best ideas, or the best methods to teach the abstraction of several seemingly unrelated problems into a common group of invention challenges that will serve hundreds of innovations. Just as philosophy class in college can shape people’s views of morality for the rest of their lives, the practical experience of conceiving and executing a new idea for a market can leave a lifelong impression on a college student for seeing and creating opportunity in the world. Many students graduate nowadays with a much better idea about how to take ideas and commercialize them into products. Adding the teaching of invention will replenish the ideas that feed the future of these innovation pipelines.
Include the economists, artists, and philosophers. Jason Silva has a wonderful quote about engineering: “The scientist and engineers who are building the future need the poets to make sense of it.” I couldn’t agree more. Artists and philosophers have an interesting reflection role in society, whether it is to challenge one’s perception of the ordinary or to make the ordinary unusual (artist) or to provide a more holistic view of a human’s purpose (philosopher). Likewise, economists can explain how technology can drive development locally and globally and the subsequent changes expected in the workforce. In other words, they all provide different optics on the same idea.
Engineering may enjoy a sterling reputation as creating a world that others do not see, but we are sometimes too enamored with this vision to ask a very simple question: If we can do it, should we do it? Technologists can cite several inventions in the past as drivers of economic change that pushed society forward (see K-waves, above) and never backward. The mechanization of the agriculture industry coincided with the emergence of manufacturing and heavy industries in the US and elsewhere in the 19th century, and this advanced the world. People moved from working on farms to working in factories, and the urbanization movement swept across the country. In a similar manner, artificial intelligence could cause a similar shift in the services sector today and create a supply of highly educated people to tackle the world’s next big problem. For this reason, they can help engineers understand the impact of their ideas even before they are implemented.
Creating new technologies without a thoughtful mulling about how they could really change the world seems irresponsible to me, given how some of these technologies could completely change large parts of the economic landscape quickly. And it could lead to other societal crises — e.g., do we really want to interrupt nature’s evolutionary clock without considering the impact of editing our own genome? Similar questions exist when we start to understand how our minds work and the principles by which we can (and should) study and influence the human traits of identity, reasoning, and self. One of our faculty recently wrote about the ethical constructs by which we should view these advances in understanding how we think, and how they can influence the science of mind control. Broadly speaking, initiating these conversations in advance will help engineers realize that these technologies should not be created in a vacuum, and they must be developed in parallel with conversations about the impact of their use.
A Mirror, Not a Trigger
All of this brings us back to the beginning. The election wasn’t the trigger but the mirror, and we must answer the call to think about engineering education to create future economic opportunity instead of passively watching it happen. We now know that advanced industries are the most powerful part of our economy for generating downstream economic output. We are fortunate that engineers are a central part of these industries. And we now know the dramatic changes in the demographics of opportunity among the electorate that occurred in the past two decades. By re-emphasizing core principles to impress upon our engineering students, we can be part of a future that focuses more on opportunities for the society rather than the individual. And we can use this new mindset to tackle some of the most pressing problems we see in front of us (e.g., affordable health care, energy, climate change) and those problems that we don’t see yet.
Faculty members in the Department of Bioengineering at the University of Pennsylvania are among the recipients of a major $9.25 million grant from the Paul G. Allen Family Foundation to study the mechanism underlying concussion and to investigate possible interventions.
David Meaney, PhD, Solomon R. Pollack Professor and Chair of the Bioengineering Department (above left), is one of two principal investigators, with Douglas H. Smith, MD, professor of neurosurgery at Penn’s Perelman School of Medicine (above right). In addition, Danielle S. Bassett, PhD, Eduardo D. Glandt Faculty Fellow and Associate Professor (below left), Dongeun (Dan) Huh, PhD, Wilf Family Term Assistant Professor (below center), and David Issadore, PhD, assistant professor (below right), all of BE Department, are co-investigators. The Allen Foundation grant also involves investigators from Columbia University (Barclay Morrison, Ph.D.), Duke University (Cameron Bass, Ph.D.), and Children’s Hospital of Philadelphia (Akiva Cohen, Ph.D.).
Selected from a large national pool of applicants, the Allen Foundation grant will bring together new technology platforms developed by Drs. Huh and Issadore to study how concussions occur at the microtissue scale and release markers of rewiring during recovery. Network theory models from Dr. Bassett’s group will provide an entirely new view on how concussion recovery occurs at all scales in the brain. The overall impact of the project will be to move away from the widely held perspective that all concussions should be treated identically and towards a view that concussions can follow several recovery pathways, some of which must be monitored closely in the days to weeks following injury.