Scientific American recently featured two gene therapies that were invented at Penn, including research from Carl June, MD, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine, director of the Center for Cellular Immunotherapies, and member of the Penn Bioengineering Graduate Group, which led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.
Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine in the Perelman School of Medicine at the University of Pennsylvania, director of the Center for Cellular Immunotherapies at Penn’s Abramson Cancer Center, and member of the Penn Bioengineering Graduate Group, received the $1 million Sanford Lorraine Cross Award for his groundbreaking work in developing chimeric antigen receptor (CAR) T cell therapy. June is a world renowned cancer cell therapy pioneer.
“Sanford Health, the only health system in the country to award a $1 million prize for achievements in the medical sciences, announced the award on April 13 at a special ceremony in Sioux Falls, South Dakota. The biennial award recognizes life-changing breakthroughs and bringing emerging transformative medical innovations to patients.
‘This is a well-deserved and exciting award for one of Penn’s most distinguished faculty members, whose pioneering research has reshaped the fight against cancer and brought fresh hope for both adults and children with the disease,’ said J. Larry Jameson, MD, PhD, Executive Vice President of the University of Pennsylvania for the Health System and Dean of the Perelman School of Medicine. ‘His contributions truly have been transformative for patients across the globe and taken the field of oncology in new and powerful directions.'”
Penn Medicine researchers have developed a unifying definition of ‘cytokine storm’ to provide a framework to assess and treat patients whose immune systems have gone rogue.
Penn Medicine’s David Fajgenbaum (left) and Carl June (right). (Image: Penn Medicine News)
One of the most elusive aspects for clinicians treating COVID-19 is the body’s immune response to the virus. In the most severe cases of COVID-19, the immune system goes into overdrive, resulting in a fever, multiorgan system damage, and often death—a cytokine storm. But how to detect and treat a cytokine storm requires that clinicians can identify it as such.
Two Penn Medicine researchers have developed a unifying definition of “cytokine storm” to provide physicians with a framework to assess and treat severely-ill patients whose immune systems have gone rogue. Cytokine storms can be triggered by different pathogens, disorders, or treatments, from COVID-19 to Castleman disease to CAR T cell therapy.
In a paper published in the New England Journal of Medicine, David Fajgenbaum,an assistant professor of translational medicine & human genetics and director of the Center for Cytokine Storm Treatment & Laboratory (CSTL), and Carl June,a professor of pathology and laboratory medicine and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center, and the Parker Institute for Cancer Immunotherapies define a cytokine storm as requiring elevated circulating cytokine levels, acute systemic inflammatory symptoms, and secondary organ dysfunction beyond what could be attributed to a normal response to a pathogen, if a pathogen is present.
“There has never been a defining central review of what a cytokine storm is and how to treat one, and now with COVID-19, that is a major issue,” says Fajgenbaum, a Castleman disease patient who has previously experienced five cytokine storms himself. “I’ve spent the last 10 years of my life as a cytokine storm patient and researcher, so I know the importance of having a comprehensive unified definition to find therapies that work across the various types of cytokine storms.”
There is widespread recognition that the immune response to a pathogen, but not the pathogen itself, can contribute to multiorgan dysfunction and other symptoms. Additionally, similar cytokine storm syndromes can occur with no obvious infection.
An artist’s illustration of nanoparticles transporting mRNA into a T cell (blue), allowing the latter to express surface receptors that recognize cancer cells (red). (Credit: Ryan Allen, Second Bay Studios)
New cancer immunotherapies involve extracting a patient’s T cells and genetically engineering them so they will recognize and attack tumors. This type of therapy is not without challenges, however. Engineering a patient’s T cells is laborious and expensive. And when successful, the alterations to the immune system immediately make patients very sick for a short period of time, with symptoms including fever, nausea and neurological effects.
Now, Penn researchers have demonstrated a new engineering technique that, because it is less toxic to the T cells, could enable a different mechanism for altering the way they recognize cancer, and could have fewer side effects for patients.
The technique involves ferrying messenger RNA (mRNA) across the T cell’s membrane via a lipid-based nanoparticle, rather than using a modified HIV virus to rewrite the cell’s DNA. Using the former approach would be preferable, as it only confers a temporary change to the patient’s immune system, but the current standard method for getting mRNA past the cell membrane can be too toxic to use on the limited number of T cells that can be extracted from a patient.
Michael Mitchell, Margaret Billingsley, and Carl June
The researchers demonstrated their technique in a study published in the journal Nano Letters. It was led by Michael Mitchell, Skirkanich Assistant Professor of Innovation of bioengineering in the School of Engineering and Applied Science, and Margaret Billingsley, a graduate student in his lab.
They collaborated with one of the pioneers of CAR T therapy: Carl June, the Richard W. Vague Professor in Immunotherapy and director of the Center for Cellular Immunotherapies in the Abramson Cancer Center and the director of the Parker Institute for Cancer Immunotherapy at the Perelman School of Medicine.