Language in Tweets Offers Insight Into Community-level Well-being

In a Q&A, researcher Lyle Ungar discusses why counties that frequently use words like ‘love’ aren’t necessarily happier, plus how techniques from this work led to a real-time COVID-19 wellness map.

By Michele W. Berger

Lyle Ungar, Ph.D. (Photo: Eric Sucar)

People in different areas across the United States reacted differently to the threat of COVID-19. Some imposed strict restrictions, closing down most businesses deemed nonessential; others remained partially open.

Such regional distinctions are relatively easy to quantify, with their effects generally understandable through the lens of economic health. What’s harder to grasp is the emotional satisfaction and happiness specific to each place, a notion ’s has been working on for more than five years.

In 2017, the group published the , a free, interactive tool that displays characteristics of well-being by county based on Census data and billions of tweets. Recently, WWBP partnered with ’s Center for Digital Health to create a , which reveals in real time how people across the country perceive COVID-19 and how it’s affecting their mental health.

That map falls squarely in line with a paper published this week in the by computer scientist , one of the principal investigators of the World Well-Being Project, and colleagues from Stanford University, Stony Brook University, the National University of Singapore, and the University of Melbourne.

By analyzing 1.5 billion tweets and controlling for common words like “love” or “good,” which frequently get used to connote a missing aspect of someone’s life rather than a part that’s fulfilled, the researchers found they could discern subjective well-being at the county level. “We have a long history of collecting people’s language and asking people who are happier or sadder what words they use on Facebook and on Twitter,” Ungar says. “Those are mostly individual-level models. Here, we’re looking at community-level models.”

In a conversation with Penn Today, Ungar describes the latest work, plus how it’s useful in the time of COVID-19 and social distancing.

Read Ungar’s Q&A at .

Dr. Lyle Ungar is a Professor of Computer and Information Science and a member of the Department of Bioengineering Graduate Group.

Machine Learning Reveals New Antibiotics for Resistant Bacteria

Cesar de la Fuente-Nunez, PhD

Once hailed as medical miracles, antibiotics are losing their effectiveness due to the rapid increase of bacterial immunity.

Researchers are scrambling to keep up with evolution, and they are currently exploring how machine learning can be applied to microbiology to develop more effective treatments.

In the past, researchers have studied bacteria behavior and used their findings to work against the natural patterns of bacterial life. In the 1980s, computer-assisted screening methods helped researchers in their efforts but few developments surfaced from their work. It seemed that there were no new antibiotics to be found using traditional methods, and pharmaceutical companies stepped away from funding antibiotic development in favor of more profitable drugs used to treat chronic conditions. But a new field of research shows a way forward, thanks to the massive advances in computing that have occurred over the intervening decades.

Among the pioneering researchers in this field is César de La Fuente, Presidential Assistant Professor in Psychiatry, Microbiology and Bioengineering. De La Fuente is accelerating the discovery of new antibiotics with his Drug Repurposing Hub, a library of more than 6,000 compounds that is using machine learning algorithms to seek out possible solutions for human disease. With his compound library, de La Fuente is able to examine drugs already approved by the FDA and hunt for new, more effective applications.

In addition to this work, de La Fuente and his colleagues are interested in using machine learning to innovate drug design itself. His lab uses a machine learning platform to generate new molecules in silico and perform experiments on them. Once the results of the experiments come in, they are fed back into the computer so the machine learning platform can continuously learn and improve its findings from the data.

In a recent interview with Katherine Harmon Courage in Quanta Magazine, de La Fuente said:

“The hypothesis is that nature has run out of inspiration in terms of providing us with new antibiotics. That’s why we think that machines … could diversify natural molecules to convert them to synthetic versions that would be much more effective.”

Originally posted on the Penn Engineering blog. Read more about de La Fuente’s work and other researchers exploring the computational design of new antibiotics in Quanta Magazine or The Atlantic.

Listen: Danielle Bassett Uses Network Science to Find Links in Human Curiosity

Danielle Bassett, Ph.D.

Danielle Bassett, J. Peter Skirkanich Professor of Bioengineering and Electrical and Systems Engineering, is a curious scientist.

Featured on a recent episode of “Choosing to be Curious” on WERA 96.7 Radio Arlington, Bassett discussed her work in studying curiosity and the potential neural mechanisms behind it. In her work, Bassett strives to re-conceptualize curiosity itself, defining it as not just seeking new bits information, but striving to understand the path through which those bits are connected.

Bassett is a pioneering researcher in the field of network science and how its tools can be applied to understand the brain. Now, Bassett and her research team are using the tools of network science and complex systems theory to uncover what common styles of curiosity people share and how individual styles differ. In addition, the team is exploring if there are canonical types of curiosity among humans or if each person’s curiosity architecture is unique.

This isn’t the first time Bassett has combined the tools of disparate fields to pursue her research. For as long as she can remember, Bassett has been insatiably curious and, while she was homeschooled as a child, she often wandered from one subject to the next and let her own interest guide her path. For Bassett, studying curiosity with the tools of physical, biology, and engineering is a natural step in her research journey.

In her interview with host Lynn Borton, Bassett says:

“What took me to curiosity is the observation that there’s a problem in defining the ways in which we search for knowledge. And that perhaps the understanding of curiosity could be benefitted by a scientific and mathematical approach. And that maybe the tools and conceptions that we have in mathematics and physics and other areas of science are useful for understanding curiosity. Which most people would consider to be more in the world of the humanities than the sciences….“Part of what I’m hoping to do is to illustrate that there are connections between disciplines that seem completely separate. Sometimes some of the best ideas in science are inspired not by a scientific result but by something else.”

To hear more about Bassett’s research on curiosity, listen to the full episode of Choosing to Be Curious.

Originally posted on the Penn Engineering blog.

Getting Physical with Developmental Biology Research

macrophages Discher
Dennis Discher, Ph.D.

By Izzy Lopez

While genetics and biochemistry research has dominated the conversation about how human bodies are formed, new research — with an old twist — is proposing that there is another star in the show of human development: mechanical forces.

At the turn of the twentieth century, medical research relied on simple mechanics to explain scientific phenomena, including how human cells morph into shape from embryo to newborn and beyond. As better chemistry techniques and DNA research burst onto the scene, however, the idea that cells could be affected by physical forces took a back seat. Now researchers are referring back to this vintage idea and bringing it into the 21st century.

Dennis Discher, Robert D. Bent Professor in the Departments of Chemical and Biomolecular Engineering, Bioengineering and Mechanical Engineering and Applied Mechanics, was featured in a recent article in Knowable Magazine for his research on the human heart and how mechanical forces exerted on heart cells give the vital organ its necessary stiffness during development.

Read the full story on the Penn Engineering blog.

Student Spotlight: Katie Falcone

Master’s student Katie Falcone

Next up in our student spotlight series is graduate student Katie Falcone, a second-year Master’s student Bioengineering. Originally from the Philadelphia suburbs, Katie did her undergraduate degree at Drexel University’s Biomedical Engineering program and has been living in the University City area for almost nine years.

 

 

 

What drew you to the field of Bioengineering?

What originally drew me to this field was a “Women in Engineering Day” I attended at a local college while in high school. I had the opportunity to hear incredible women speak about their research regarding biomaterials and tissue engineering. This event showed me the impact this field can have on the world. This drove me to pursue an undergraduate degree in Biomedical Engineering, which only strengthened my passion. As I furthered my studies and began working full-time at a biotechnology company, I learned more about bioengineering. With encouragement from my coworkers and family, I decided to pursue my Master’s in Bioengineering and am delighted to have the opportunity to study at Penn.

What kind of research do you conduct, and what do you hope to focus on for your thesis?

I am actually a part-time student, who works full-time at a drug packaging and medical device company out in Exton, PA. Though I am not doing research on campus, my coursework has tied into previous research projects I have participated in at my job. My latest project entailed understanding different material properties used in container closure systems for mAb-based biologics and how they interact. This work was done to support an understanding of how to pick appropriate vial/syringe systems for various drug products in development.

What’s your favorite thing to do on Penn’s campus or in Philly?

My favorite thing to do is trying all the new restaurants and incredible foods this city has to offer. I think Philadelphia is so unique and has such rich cultural influences. With so many different neighborhoods and restaurant options you really can’t go wrong.

What did you study for your undergraduate degree, how does it pair with the work you’re doing now, and what advice would you give to your undergraduate self?

My undergraduate degree was in Biomedical Engineering. It has supported my graduate coursework very well and has given me a great opportunity to dive deeper into certain parts of my studies.

My advice to my younger self would be to take your time! It took me a little while to evaluate different graduate programs and choose which was right for me. Though it took some time, I ultimately decided what was best for me and couldn’t be happier with my choices.

What are you thinking about doing after graduate school?

Currently, I work full-time as an Associate Packaging Engineer at West Pharmaceutical Services in Exton, PA. I hope to take my degree to further my career and to help support my future aspirations at this company.

Student Spotlight: Raveen Kariyawasam

Raveen Kariyawasam (BSE & BS ’21)

The first in our new student spotlight series is junior Raveen Kariyawasam. Raveen (BSE & BS ’21) is a dual degree student in the School of Engineering and Applied Science and Wharton, studying Bioengineering, Finance, and Management.

 

 

 

 

What drew you to the field of Bioengineering?

Growing up in Sri Lanka and being surrounded by relatives who were doctors, I have been fascinated by both modern and traditional medicine. However, during physician shadowing in high school, I came to the realization that I was far more fascinated with the technology doctors use rather than practicing medicine. Therefore, I made the decision to turn down studying medicine in the U.K. and come to Penn to study Bioengineering in the hopes of being more hands-on with medical technology.

Have you done research with a professor on campus? What did you like, and what didn’t you like about it?

I currently work in the Interventional Radiology Lab at the Hospital of the University of Pennsylvania (HUP) under Assistant Professor of Radiology Chamith Rajapakse. The best thing about research here is that I get to be hands-on with some of the most cutting edge technology in the world and help pioneer medical diagnostic techniques that aren’t traditionally being used anywhere else. The only downside is that the learning curve can be a little too steep.

What have been some of your favorite courses and/or projects in Bioengineering so far?

Without a doubt, my favorite BE class has to be BE 309 (Bioengineering Modeling, Analysis and Design Laboratory I) and especially the Computer-Cockroach Interface we have to develop for this lab.

What advice would you give to your freshman self?

There are way too many things happening at a given time at Penn. Take it easy and plan it out so you can do everything you want to! It’s totally possible. Who says you can’t work hard and play hard?!

What do you hope to pursue after obtaining your undergraduate degree?

My hope is to head my own health-tech startup and create technologies that will aid developing countries, starting out with my humble island of Sri Lanka first.

Brain-machine interfaces: Villainous gadgets or tools for next-gen superheroes?

A Q&A with neuroscientist Konrad Kording on how connections between minds and machines are portrayed in popular culture, and what the future holds for this reality-defying technology.

Science fiction and superhero films portray brain-machine interfaces as malevolent robots that plug into human brains for fuel in The Matrix (top left) or as power-enhancing devices in X-Men (top right). In reality, they can help patients use artificial limbs or directly connect to computers. (Image credits, from top left to bottom right: Warner Brothers, 20th Century Fox, Intelligent Films, AFP Photo/Jean-Pierre Clatot)

For the many superheroes that use high-powered gadgets to save the day, there’s an equal number of villains who use technology nefariously. From robots that plug into human brains for fuel in “The Matrix” to the memory-warping devices seen in “Men in Black,” “Captain Marvel,” and “Total Recall,” technology that can control people’s minds is one of the most terrifying examples of technology gone wrong in science fiction and superhero films.

Now, progress made on brain-machine interfaces, technology that provides a direct communication link between a brain and an external device, is bringing us closer to a world that feels like science fiction. Elon Musk’s company NeuraLink is working on a device to let people control computers with their minds, while Facebook’s “mind-reading initiative” can decode speech from brain activity. Is this progress a glimpse into a dark future, or are there more empowering ways in which brain-machine interfaces could become a force for good?

Penn Today talked with Konrad Kording, a Penn Integrates Knowledge Professor of Neuroscience, Bioengineering, and Computer and Information Science whose group works at the interface of data science and neuroscience to better understand the human brain, to learn more about brain-machine interfaces and where real-world technologies and science fiction intersect.

Q: What are the main challenges in connecting brains to devices?

The key problem is that you need to get a lot of information out of brains. Today’s prosthetic devices are very slow, and if we want to go faster it’s a tradeoff: I can go slower and then I am more precise, or I can go faster and be more noisy. We need to get more data out of brains, and we want to do it electrically, meaning we need to get more electrodes into brains.

So what do you need? You need a way of getting electrodes into the brain without making your brain into a pulp, you want the electrodes to be flexible so they can stay in longer, and then you want the system to be wireless. You don’t want to have a big connector on the top of your head.

It’s primarily a hardware problem. We can get electrodes into brains, but they deteriorate quickly because they are too thick. We can have plugs on people’s heads, but it’s ruling out any real-world usage. All these factors hold us back at the moment.

That’s why the Neuralink announcement was very interesting. They get a rather large number of electrodes into brains using well-engineered approaches that make that possible. What makes the difference is that Neuralink takes the best ideas in all the different domains and puts them together.

Q: Most examples in pop culture of connecting brains to machines have villainous or nefarious ends. Does that match up with how brain-machine interfaces are currently being developed? 

Let’s say you’ve had a stroke, you can’t talk, but there’s a prosthetic device that allows you to talk again. Or if you lost your arm, and you get a new one that’s as good as the original—that’s absolutely a force for good.

It’s not a dark, ugly future thing, it’s a beautiful step forward for medicine. I want to make massive progress in these diseases. I want patients who had a stroke to talk again; I want vets to have prosthetic devices that are as good as the real thing. I think short-term this is what’s going to happen, but we are starting to worry about the dark sides.

Read the full interview at Penn Today.