The Y-Prize, a student startup competition based on technologies developed at Penn Engineering, is hosted by the Wharton School’s Mack Institute for Innovation Management, Penn Wharton Entrepreneurship and the Penn Center for Innovation each year. The team with the best pitch takes home $10,000 in investment funding.
The team utilized the steerable needle technology developed by Mark Yim, Asa Whitney Professor of Mechanical Engineering and Applied Mechanics, and colleagues. Yim’s device is a flexible needle that can be guided through soft materials with simple handheld controls, enabling users to pinpoint hard-to-reach areas that might otherwise require more complicated tools or robotic assistance.
Team Ossum is comprosed of Ananya Dewan (Vagelos LSM), Hoang Le (Vagelos LSM), Shiva Teerdhala (Vagelos LSM), Karan Shah (SEAS), and Savan Patel (M&T). Karan and Savan are both bioengineering majors. Their winning pitch to a panel of expert judges proposed “a commercial application to remove obstacles to safe cerclage use in orthopedic fracture fixation with Penn’s steerable needle technology.” Initial work for Ossum’s device, OsPass, was done in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab and interdisciplinary makerspace of the Department of Bioengineering which is open to any Penn students campus-wide.
Team Steed, who proposed “an application to make breast biopsies less painful and damaging,” placed among the competition finalists and included bioengineering majors Farhaanah Mohideen, Ananyaa Kumar, and Kristina Khaw.
From smartphones and fitness trackers to social media posts and COVID-19 cases, the past few years have seen an explosion in the amount and types of data that are generated daily. To help make sense of these large, complex datasets, the field of data science has grown, providing methodologies, tools, and perspectives across a wide range of academic disciplines.
As part of its $750 million investment in science, engineering, and medicine, the University has committed to supporting the future needs of this field. To this end, the Innovation in Data Engineering and Science (IDEAS) initiative will help Penn become a leader in developing data-driven approaches that can transform scientific discovery, engineering research, and technological innovation.
“The IDEAS initiative is game-changing for our University,” says President Amy Gutmann. “This new investment allows us to boost our interdisciplinary efforts across campus, recruit phenomenal additional team members, and generate an even more sound foundation for discovery, experimentation, and design. This initiative is a clear statement that Penn is committed to taking data science head-on.”
“One of the unique things about data science and data engineering is that it’s a very horizontal technology, one that is going to be impacting every department on campus,” says George Pappas, Electrical and Systems Engineering Department chair. “When you have a horizontal technology in a competitive area, we have to figure out specific areas where Penn can become a worldwide leader.”
To do this, IDEAS aims to recruit new faculty across three research areas: artificial intelligence (AI) to transform scientific discovery, trustworthy AI for autonomous systems, and understanding connections between the human brain and AI.
In the area of neuroscience and how the human brain is similar to AI and machine learning approaches, research from PIK Professor Konrad Kording and Dani Bassett’sComplex Systems lab exemplifies the types of cross-disciplinary efforts that are essential for addressing complex questions. By recruiting additional faculty in this area, IDEAS will help Penn make strides in bio-inspired computing and in future life-changing discoveries that could address cognitive disorders and nervous system diseases.
Kariyawasam is a double major in Engineering’s Department of Bioengineering, with concentrations in computational medicine and medical devices, and in the Wharton School, with concentrations in finance and entrepreneurship and innovation.
“We are so proud of our newest Penn Rhodes Scholars who have been chosen for this tremendous honor and opportunity,” said President Amy Gutmann. “The work Raveen has done in health care innovation and accessibility and Nicholas has done to support student well-being while at Penn is impressive, and pursuing a graduate degree at Oxford will build upon that foundation. We look forward to seeing how they make an impact in the future.”
The Rhodes is highly competitive and one of the most prestigious scholarships in the world. The scholarships provide all expenses for as long as four years of study at Oxford University in England.
According to the Rhodes Trust, about 100 Rhodes Scholars will be selected worldwide this year, chosen from more than 60 countries. Several have attended American colleges and universities but are not U.S. citizens and have applied through their home country, including Kariyawasam in Sri Lanka.
Catherine Michelutti, a junior in Bioengineering and Wharton and fellow in the Stavros Niarchos Foundation (SNF) Paideia Program, shared her virtual internship experience with the Orion Organisation, a healthcare NGO based in South Africa that provides for “the educational, training and therapeutic needs of children, youth and adults living with physical, psychosocial challenges, intellectual and neurological disabilities”:
“My internship with the Orion Organization has prompted me to reflect on my identity in terms of where my passions and future career interests lie. My previous work experiences have all been in biomedical research fields, which is something I’m passionate about and want to continue doing throughout my career. However, working with Orion has opened my eyes to the realms of interdisciplinary work that comes with operating a healthcare NGO and the joys that come with it.”
Each Penn Bioengineering (BE) student’s undergraduate experience culminates in Senior Design, a two-semester capstone project in which student teams conceive, design, and develop a bioengineering project, whether a medical device, molecular biological therapeutic, or research tool. Projects are inherently interdisciplinary, and can involve biomaterials, electronics, mechanics, molecular biology, nanotechnology, and microfluidics. Research and development is supervised by BE faculty, lab staff, and graduate student TA’s and project managers, and work is conducted in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (which successfully reopened for in-person activities this Spring semester).
This year’s 11 teams included the variety and innovation we’ve come to expect from our outstanding students, ranging from devices which track medical conditions, such afib and POTS, to technology responding to our post-COVID world, such as a disinfecting robot and a kit to make telemedicine more effective. The year finished with presentations to alumni judges, and BE’s annual Demo Day (the only in-person demo day on the engineering campus this year) on April 15, 2021, in which students showcased their designs to faculty.
Several teams were highlighted for awards recognition.
Tula won the Grand Prize Award at the Weiss Tech House Senior Design Pitch competition, sponsored by Penn’s Weiss Tech House, as well as a Berkman Opportunity Fund grant from Penn Engineering. Tula’s members are Bioengineering student Shreya Parchure (BSE 2021 & MSE 2021), Mechanical Engineering student Miriam Glickman (BSE 2021 & MSE 2022), and Computer Science students Ebtihal Jasim (BSE 2021) and Tiffany Tsang (BSE 2021).
TelemedTree (David Alanis Garza, Aurora Cenaj & Raveen Kariyawasam) and rUmVA (Yasmina Al Ghadban, Rachel Madhogarhia, Jeong Inn Park, Robert Paslaski & Phuong Vu) also received Berkman Opportunity Fund grants.
RHO Therapeutics was named a finalist in the Rice 360 Design Competition for 2021 (David Bartolome, Ethan Boyer, Patrisia de Anda, Kelly Feng & Jenny Nguyen).
In addition, three teams won BE’s internal Senior Design competition: IdentiFly (MEAM student Armando Cabrera, ESE student Ethan Chaffee, MEAM student Zachary Lane, ESE student Nicoleta Manu & BE student Abum Okemgbo), OtoAI, and rUmVa.
Short descriptions of each project are below. See each project’s full abstract, final paper, and video presentation here. The full 2021 presentation Youtube playlist is linked below.
reActive is a low-cost wearable device that measures ground reaction force as well as knee angle to aid physical therapists in quantifying an athlete’s recovery from an ACL injury.
EndoMagno is a novel magnetic endoscopy probe that effectively grips metallic objects by interfacing with an endoscope.
NoFib is an at-home wearable for athletes with histories of atrial fibrillation or those recovering from ablation surgeries who wish to continue their workout regimen and track their cardiac recovery without needing to leave their residence.
Tula is a smart compression stocking platform to improve quality of life for people with Postural Orthostatic Tachycardia Syndrome (POTS), a disease which causes fainting upon standing due to blood pooling in legs. Tula can predict a POTS attack through real-time heart rate monitoring and then prevent fainting using dynamic compression.
RHO Therapeutics is a low-cost, wearable glove device that trains fine motor movements using a rehabilitative game that causes motor-mediated flexion and extension of the patient’s hand to aid in chronic stroke rehabilitation.
EarForce aims to monitor fighter pilots’ health during training and in-flight missions via a low-cost headphone system. The device collects physiological data through the ear and is compatible with existing pilot headphone systems.
IdentiFly is a low-cost device which will provide labs with an easy to integrate way to automatically sort fruit flies by sex.
TeleMedTree introduces a new level of telemedicine. It is an affordable precision-focused, at-home diagnostic kit to help immunocompromised individuals with respiratory conditions receive a high quality monitoring of their health that is on par or better than what is possible during an in-person visit.
OtoAI is a novel digital otoscope that enables primary care physicians to take images of the inner ear and leverages machine learning to diagnose abnormal ear pathologies.
Synchro-Sense is a device which detects when patients on ventilators are at maximum inhalation and triggers an X-ray image capture for accuracy.
rUmVa is a cost-effective, autonomous robot that can quickly disinfect rooms by intelligently sanitizing high-touch surfaces and the air.
Last month, the second annual Women in Data Science (WiDS) @ Penn Conference virtually gathered nearly 500 registrants to participate in a week’s worth of academic and industry talks, live speaker Q&A sessions, and networking opportunities.
Hosted by Penn Engineering, Analytics at Wharton, Wharton Customer Analytics and Wharton’s Statistics Department, the conference’s theme — “This is What a Data Scientist Looks Like” – emphasized the depth, breadth, and diversity of data science, both in terms of the subjects the field covers and the people who enter it.
Following welcoming remarks from Erika James, Dean of the Wharton School, and Vijay Kumar, Nemirovsky Family Dean of Penn Engineering, the conference began with a keynote address from President of Microsoft US and Wharton alumna Kate Johnson.
Conference sessions continued throughout the week, featuring panels of academic data scientists from around Penn and beyond, industry leaders from IKEA Digital, Facebook and Poshmark, and lightning talks from students speakers who presented their data science research.
All of the conference’s sessions are now available on YouTube and the 2021 WiDS Conference Recap, including a talk titled “How Humans Build Models for the World” by Danielle Bassett, J. Peter Skirkanich Professor in Bioengineering and Electrical and Systems Engineering.
The Penn Bioengineering student spotlight series continues with David Alanis Garza. David is a senior from Monterrey, Mexico finishing his dual degree in Bioengineering in the School of Engineering and Applied Sciences and Health Care Management at the Wharton School, with minors in Chemistry and Math. He currently serves as the Captain of the Medical Emergency Response Team (MERT), managing clinical operations and the organization’s response to COVID-19. He is also a Penn tour guide and a member of the Sigma Phi Epsilon fraternity. In his free time, he enjoys mountain climbing, camping, and playing guitar.
What drew you to the field of Bioengineering?
I first became interested in BE during my high school physics class, in which my teacher motivated our lesson in electromagnetism by explaining the basics behind an MRI machine and how defibrillators are basically glorified capacitors. I realized that my lifelong dream to be a surgeon would best be served if I armed myself with a scalpel and screwdriver alike. With the fast paced advances in the medical field, the best physicians must not only understand the underlying pathophysiology of disease, but also how to interact with and keep up with innovations in the biomedical engineering field. At Penn, I have enjoyed discovering that BE is much more wide than what I initially appreciated.
Have you ever done research with a professor on campus? What did you like, and what didn’t you like about it?
I have had the opportunity to work in the Center for Resuscitation Science on a research project investigating diagnostic patterns in the electrocardiogram of Pulseless Electrical Activity (PEA). I truly enjoyed the opportunity to take on more responsibility as the first author of the manuscript we are currently working on, and learned so much about communication in science when presenting the research during American Heart Association’s Resuscitation Science Symposium this last weekend. What I learned in Bioengineering, especially in BE 309/310 (Lab) and BE 301 (Signals and Systems), has been incredibly useful for my research. I am also currently completing a Wharton senior thesis exploring how financial derivative securities could be used to hedge risk in emergency departments. Penn is incredibly supportive of students seeking to gain more research experience, offering an abundance of opportunities for guided and independent projects. I truly enjoyed the opportunity of finding answers to very specific questions in my fields, as well as the valuable relationships with my mentors I formed along the way.
What have been some of your favorite courses and/or projects in Bioengineering so far?
BE 305 (Engineering Principles of Human Physiology) has been my favorite course at Penn. In this class, we were able to understand, quantify, and hack the body’s physiology through an engineering lens. From building a pulseoximeter with our phone cameras, to determining the blood volume of the left ventricle over time with MRI images, this class was very much hands on. A close second is BE 301 (Bioengineering Signals and Systems). I hadn’t previously grasped how this discipline was relevant to medicine until this class, but now I find myself applying what I learned in my research. Lastly, as many other BE students will tell you, the human-cockroach machine interface project in BE lab has been one of my most challenging and rewarding undertakings at Penn. Our team linked a wearable device that measured the forearms position and muscle contractions, so that when the wearer painted a picture, a cockroach leg would be moved and stimulated to paint an imitation of the image. Overcoming my phobia of cockroaches and the countless hours of trial and error were all worth it, for I can now brag about how my team made an artist out of a cockroach leg.
What advice would you give to your freshman self?
It is a great idea to identify which area of BE research you are interested in, and plan your academics so that you can take the closely related courses early on. This will empower you to conduct research with greater responsibilities or give you marketable skills that employers may look for when hiring for internships of your interest. BE upperclassmen are always willing to help, so feel free to reach out to us for any advice.
What do you hope to pursue after obtaining your undergraduate degree?
I will be taking a gap year in which I will be working in the area of hospital administration and clinical engineering before I begin my medical school journey. As of right now, I am interested in specializing in emergency medicine or surgery, but I know my interests may change as my understanding of medicine grows throughout the next years.
Have you done or learned anything new or interesting during quarantine?
The COVID pandemic gave me a unique opportunity to manage the clinical operations of MERT’s emergency medical services during an unprecedented challenge. As a result, I learned a lot about how different hospitals and health care systems are managing their response, not to mention the standard protocols to ensure the safety and wellness of our patients and providers. On a less professional note, I have been able to get a bit better at chess and guitar.
Rising Bioengineering Sophomore Catherine Michelluti (BSE 2023) has been featured on Penn’s SNF Paideia Program Instagram which discusses her diverse interests in machine learning in medicine, computer science, playing the violin and more. Catherine is a pre-med student who is pursuing an uncoordinated dual degree between the School of Engineering and Applied Science and the Wharton School of Business (BS in Economics 2023). She is also an incoming fellow in the SNF Paideia Program, which is supported by the Stavros Niarchos Foundation, is an interdisciplinary program which “encourage[s] the free exchange of ideas, civil and robust discussion of divergent views, and the integration of individual and community wellness, service, and citizenship through SNF Paideia designated courses, a fellows program, and campus events” (SNF Paideia website).
In a Q&A, Bioengineering doctoral candidate Ana P. Peredo explains how the idea of “regeneration” motivated her to join WIVA, Wharton Social Impact’s impact investing program.
Why would you — a bioengineering Ph.D. student — seek to join WIVA?
“As a high school student, I was motivated to study bioengineering because of its potential to generate impact through technical innovation. To me, bioengineering was a way to apply engineering principles to create medical technology in the hopes of devising solutions for global health concerns.
Though I have gained significant understanding of the current pressing healthcare needs, I felt that I was missing a key understanding of how investors think about social impact. To better understand how to apply my science background to the impact space, I joined WIVA. I also wanted to venture outside of healthcare and learn about other important social impact sectors such as education, energy, and environment, all of which WIVA explores in its deal-sourcing process.”
What have you learned through WIVA that you have not been exposed to before?
“I learned how to assess early-stage startups for their impact and return-on-investment potential, as well as how to rigorously analyze company financials and projections.
I also had the opportunity to meet leading social impact professionals through WIVA. I attended a Wharton Social Impact Initiative event with Vincent Stanley, the Director of Philosophy at Patagonia. From this discussion, I learned about how the word ‘sustainable’ continues to be misused by companies and how companies should try to ‘regenerate’ the resources they consume to be truly deemed sustainable.
This conversation brought to mind my research experience with regeneration — could I use my WIVA deal-sourcing techniques to find impactful startups that use this concept?”