Since 1916, University of Pennsylvania undergraduates have celebrated their last class day as juniors to mark Hey Day. While initially conceived as something solemn and rather formal, today it is an opportunity for students to get decked out in red T-shirts and novelty straw hats and bamboo canes (fashions from 1916) and celebrate.
This year, Hey Day was on April 27, and it was no exception to previous years. Several of our rising seniors were celebrating with everyone on College Green.
In addition to the gathering of students to be “officially” be made seniors by University President Amy Gutmann (see video here) and a passing of the gavel to next year’s junior class president, some students dropped in on their favorite teachers and staff members to say hello.
One of two Penn students recently awarded Barry Goldwater Scholarships is sophomore Michael Tran Duong, who works in the lab of Bioengineering Department faculty member Jennifer Phillips-Cremins.
“It is a wonderful honor for Michael to receive this extremely competitive award,” Professor Phillips-Cremins said. We are fortunate that Michael landed in a lab within Bioengineering at Penn, as this award indicates he has a very bright future well beyond Penn.”
Michael said, “I feel honored to receive this award and really appreciate the mentorship of Dr. Phillips-Cremins and her 3D Genome Folding and Neurobiology lab. Conducting research with Dr. Cremins as a high school student and undergraduate and receiving this award have strengthened my resolve to help patients with brain disease as a physician-scientist.”
The Goldwater Scholarship, named for the late U.S. Senator and Republican presidential candidate Barry Goldwater is awarded annually to 240 students who intend to pursue careers in math or science research. The amount of the award is as much as $7,500.
When ABC premiered The Six Million Dollar Man more than 40 years ago, the idea of replacing or augmenting human limbs with fully functional biomechanical/biomechatronic versions probably seemed a distant possibility. In fact, the concept had already been in development for decades, but research in this area is only now coming to fruition. Three years ago, researchers in Chicago reported in the New England Journal of Medicine that they had fitted a 31-year-old amputee with a robotic leg that the patient could control with electromyographic, or EMG, signals from salvaged nerves.
Reflecting these developments, undergraduate students in the Department of Bioengineering (BE) have spent the last few weeks developing their own prosthetic devices, although both the mechanics and the “patient” are a bit cruder. Over the course of five lab sessions, these students are creating an “HCMI” — a human-cockroach machine interface that can translate an individual’s own nerve signals into ones that can control a cockroach leg.
The students performing these experiments are enrolled the first of two lab courses that BE students take as juniors. In the George H. Stephenson Foundation Undergraduate Bioengineering Laboratory, the students spend the first few sessions familiarizing themselves with cockroach anatomy. Each group then attaches an individual cockroach leg to a mechanical motor interface, creating a biomechatronic prosthesis, i.e., one that combines electronic, mechanical, and biological systems.
This part of the experiment was considered successful when the students were able to write the letters “BE” with the cockroach leg, using signals generated by computer. This is a more difficult task than it might seem, both because each cockroach leg responds at slightly different frequency-voltage ranges.
Why a cockroach leg?
“They’re easily attainable and easy to deal with,” says Sevile Mannickarottu, who is director of the Stephenson lab. “They’re also relatively large, which makes accessing their legs easy.”
The cockroach’s nervous system is also much simpler than those of birds or mammals, thus simplifying the process of creating the HCMI.
Once the students can write with the biomechantronic device, the final step of the experiment begins. Using human input, students are required to combine two devices to move the prosthetic. One of the devices is an EMG electrode; the other device is up to the student, and it can be a microphone, a motion sensor, or a range of other devices. Working directly with EMG signals is a challenge according to Mannickarottu, who described it as “incredibly noisy and difficult to interpret into meaningful data.”
After choosing their human input device, students send the signals from the device to a computer, which then converts the signal into an EMG signal, which is sent back out to the prosthetic leg. The students tried several different approaches to get the leg to move, including a musical keyboard, a force sensor, and a flex sensor. One group chose to use a Myo armband, a gesture recognition device produced by Thalmic Labs that is commonly used for video games.
With human prostheses and brain-machine interfaces rapidly advancing, overcoming a bit of entomophobia was a worthwhile endeavor for these undergrads.
Professor Brian Chow, PhD, who directs the lab in which Ivan works, speaks glowingly of him. “Ivan’s research in the design of de novo proteins for molecular imaging represents a fundamentally new approach to inventing tools for elucidating the physiology of targeted cells. It is completely unchartered territory for mammalian biology and bioengineering,” Dr. Chow says. “What sets Ivan apart as a young scientist is his rare blend of exceptional skills in experimental biology and deep understanding of its mathematical and physical underpinnings. Few possess that blend at his age.”
Every year, the Soros Fellowships are awarded to 30 American students who are either immigrants or the children of immigrants. The field is highly competitive; this year there were almost 1,800 applicants. Ivan and his 29 colleagues will receive up to $90,000 for funding of their graduate educations.