Karen Xu Honored with P.E.O. Scholar Award

Karen Xu, a 2024 doctoral graduate in Bioengineering at the University of Pennsylvania, is one of 100 doctoral students in the U. S. and Canada selected to receive a $25,000 Scholar Award from the P.E.O. Sisterhood. 

The P.E.O. Scholar Awards were established in 1991 to provide substantial merit-based awards for women of the United States and Canada who are pursuing a doctoral-level degree at an accredited college or university.  Scholar Awards recipients are a select group of women chosen for their high level of academic achievement and their potential for having a positive impact on society.

The P.E.O., founded January 21, 1869, at Iowa Wesleyan College, Mount Pleasant, Iowa, is a philanthropic educational organization dedicated to supporting higher education for women.  There are approximately 6,000 local chapters in the United States and Canada with nearly a quarter of a million active members.

Xu graduated summa cum laude with a B.S.E. in Biomedical Engineering from Duke University in 2018, after which she joined the M.D.-Ph.D. program at the University of Pennsylvania. She completed her Ph.D. in Bioengineering in spring 2024, funded by an NIH NRSA F30 fellowship, and is set to earn her M.D. in 2026. Under the mentorship of Jason Burdick, Bowman Endowed Professor in Chemical and Biological Engineering at the University of Colorado Boulder and Adjunct Professor in Bioengineering in Penn Engineering, and Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery in the Perelman School of Medicine and in Bioengineering in Penn Engineering, her doctoral research has focused on engineering disease models to facilitate therapeutic discoveries. Her doctoral thesis involved the fabrication of hydrogels as tissue mimics to investigate how extracellular environments affect cell behaviors, thereby informing repair of dense connective tissues.

Beyond her research, Xu has taught with the Educational Pipeline Program at the Netter Center and the Perelman School of Medicine, where she hopes to inspire and support the next generation of healthcare workers and scientists.

Penn Bioengineering Junior Named 2024 Udall Scholar

by Louisa Shepard

Third-year undergraduate Joey Wu (Image: Courtesy of the Center for Undergraduate Research and Fellowships)

The University of Pennsylvania’s Joey Wu, a third-year student studying bioengineering and environmental science in the Vagelos Integrated Program in Energy Research (VIPER) program, has been named a 2024 Udall Scholar by the Udall Foundation. VIPER is a dual-degree program in the School of Engineering and Applied Science and School of Arts & Sciences.

Wu is among 55second-year and third-year students selected from 406 candidates nominated by 192colleges and universities nationwide. Scholars are recognized for leadership, public service, and commitment to issues related to the environment or to Native American nations. Each scholar will be awarded as much as $7,000.

A Taiwanese-American undergraduate scientist from Woodbury, Minnesota, Wu is the founder and international director of Waterroots, a nonprofit environmental education project that uses climate storytelling to combat water insecurity in more than 20 countries. Wu is a researcher in Penn Engineering’s McBride Lab, where he works as a plant specialist for a project that promotes environmental stability and sustainable agriculture. He is the deputy director of research for the nonprofit Climate Cardinals, a member of Penn’s Student Advisory Group for the Environment, and the North America representative for the Tunza Eco-Generation Ambassador program. Wu is a Clinton Global Initiative Scholar, a Duke Interfaith Climate Fellow, an IEEE Bio-X Scholar, a 2023 Millennium Fellow, and a 2024 UN ECOSOC Youth Delegate. In addition, he is a resident advisor in Penn’s Stouffer College House, as well as a Penn Engineering and a VIPER student ambassador.

Wu is the 10th student from Penn to be named a Udall Scholar since Congress established the foundation in 1992 to honor Morris and Stewart Udall for their impact on the nation’s environment, public lands, and natural resources and for their support of the rights and self-governance of American Indians and Alaska Natives.

Wu applied to the Udall Scholarship with the support of Penn’s Center for Undergraduate Research and Fellowships.

This story was originally posted in Penn Today.

The CiPD Partners with the Mack Institute for Innovation and Management to Develop Tooth-Brushing Robots

by Melissa Pappas

Left to right: Hong-Huy Tran, Chrissie Jaruchotiratanasakul, Manali Mahajan (Photo Courtesy of CiPD)

The Center for Innovation and Precision Dentistry (CiPD), a collaboration between Penn Engineering and Penn Dental Medicine, has partnered with Wharton’s Mack Institute for Innovation Management on a research project which brings robotics to healthcare. More specifically, this project will explore potential uses of nanorobot technology for oral health care. The interdisciplinary partnership brings together three students from different Penn programs to study the commercialization of a new technology that detects and removes harmful dental plaque.

“Our main goal is to bring together dental medicine and engineering for out-of-the-box solutions to address unresolved problems we face in oral health care,” says Hyun (Michel) Koo, Co-Founding Director of CiPD and Professor of Orthodontics. “We are focused on affordable solutions and truly disruptive technologies, which at the same time are feasible and translatable.”

Read the full story in Penn Engineering Today.

Michel Koo is a member of the Penn Bioengineering Graduate Group. Read more stories featuring Koo in the BE Blog.

To learn more about this interdisciplinary research, please visit CiPD.

This press release has been adapted from the original published by the Mack Institute for Innovation Management.

A Return to Jamaica Brings Seven Student-Invented Devices to Help People and Wildlife

by Melissa Pappas

Students test the GaitMate harness and structure as a tool to help recovering patients walk.

Penn students have been building their knowledge and hands-on experience in places all over the world through Penn Global Seminars. Last May, “Robotics and Rehabilitation” brought Penn students back to the tropical island of Jamaica to collaborate with local university students and make an impact on recovery and quality of life for patients in Kingston and beyond. 

Course leaders Camillo Jose (CJ) Taylor, Raymond S. Markowitz President’s Distinguished Professor in Computer and Information Science (CIS), and Michelle J. Johnson, Associate Professor of Physical Medicine and Rehabilitation at the Perelman School of Medicine and Associate Professor in Bioengineering (BE) and Mechanical Engineering and Applied Mechanics (MEAM) at Penn Engineering, brought the first cohort of students to the island in 2019

“CJ and I are both Jamaicans by birth,” says Johnson. “We were both excited to introduce the next generation of engineers to robotics, rehabilitation and the process of culturally sensitive design in a location that we are personally connected to.” 

As they built relationships with colleagues at the University of West Indies, Mona (UWI, Mona) and the University of Technology, Jamaica (UTECH), both Johnson and Taylor worked to tie the goals of the course to the location.

“In the initial iteration of the course, our goal was to focus on the applications of robotics to rehabilitation in a developing country where it is necessary to create solutions that are cost effective and will work in under-resourced settings,” says Taylor. 

Taylor and Johnson wanted to make the course a regular offering, however, due to COVID-related travel restrictions, it wasn’t until last spring that they were able to bring it back. But when they did, they made up for lost time and expanded the scope of the course to include solving health problems for both people and the environment.

“While we started with a focus on people, we realized that the health and quality of life of a community is also impacted by the health of the environment,” says Taylor. “Jamaica has rich terrestrial and marine ecosystems, but those resources need to be monitored and regulated. We ventured into developing robotics tools to make environmental monitoring more effective and cost-friendly.”

One of those student-invented tools was a climate survey drone called “BioScout.” 

“Our aim was to create a drone to monitor the ecosystem and wildlife in Jamaica,” says Rohan Mehta, junior in Systems Science and Engineering. “We wanted to help researchers and rangers who need to monitor wildlife and inspect forest sectors without entering and disturbing territories, but there were no available drones that met all of the following criteria necessary for the specific environment: affordable, modular, water-resistant and easy to repair. So we made our own.”

Another team of students created a smart buoy to reduce overfishing. The buoy was equipped with an alarm that goes off when fishermen get too close to a no-fishing zone.

Five other student teams dove into projects aligned to the original goals of the course. Their devices addressed patients’ decreased mobility due to diabetes, strokes and car accidents. These projects were sponsored by the Sir John Golding Rehabilitation Center.

One of which, the GaitMate, was engineered to help stroke patients who had lost partial muscle control regain their ability to walk.  

“We developed a device that supports a patient’s weight and provides sensory feedback to help correct their form and gait as they walk on a treadmill, ultimately enhancing the recovery process and providing some autonomy to the patient,” says Taehwan Kim, senior in BE. “The device is also relatively cheap and simple, making it an option for a wide variety of physical therapy needs in Jamaica and other countries.”

Read the full story in Penn Engineering Today.

2024 Penn Bioengineering Senior Design Projects Advance to Interdepartmental Competition

On April 17, 2024, the Department of Bioengineering held its annual Bioengineering (BE) Senior Design Presentations in the Singh Center for Nanotechnology, followed by a Design Expo in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace.

A panel of expert and alumni judges chose 3 teams to advance to the School-wide, interdepartmental competition, to be held on May 3, 2024.

Team ADONA: Jude Barakat, Allison Elliott, Daniel Ghaderi, Aditi Ghalsasi, Taehwan Kim

ADONA (A Device for the Assisted Detection of Neonatal Asphyxia)

Hypoxic-ischemic encephalopathy (HIE) is a condition that arises from inadequate oxygen delivery or blood flow to the brain around the time of birth, resulting in long-term neurological damage. This birth complication is responsible for up to 23% of neonatal deaths worldwide. While effective treatments exist, current diagnostic methods require specialized neurologists to analyze an infant’s electroencephalography (EEG) signal, requiring significant time and labor. In areas where such resources and specialized training are even scarcer, the challenges are even more pronounced, leading to delayed or lack of treatment, and poorer patient outcomes. The Assisted Detection of Neonatal Asphyxia (ADONA) device is a non-invasive screening tool that streamlines the detection of HIE. ADONA is an EEG helmet that collects, wirelessly transmits, and automatically classifies EEG data using a proprietary machine learning algorithm in under two minutes. Our device is low-cost, automated, user-friendly, and maintains the accuracy and reliability of a trained neurologist. Our classification algorithm was trained using 1100 hours of annotated clinical data and achieved >85% specificity and >90% sensitivity on an independent 200 hour dataset. Our device is now produced in Agilus 30, a flexible and tear resistant material, that reduces form factor and ensures regulatory compliance. For our final prototype, we hope to improve electrode contact and integrate software with clinical requirements. Our hope is that ADONA will turn the promise of a safer birth into a reality, ensuring instant peace of mind and equitable access to healthcare, for every child and their families.

Team Epilog: Rohan Chhaya, Carly Flynn, Elena Grajales, Priya Shah, Dori Xu

Epilog

To address the critical need for effective, at-home seizure monitoring in pediatric neurology, particularly for Status Epilepticus (SE), our team developed Epilog: a rapid-application electroencephalography (EEG) headband. SE is a medical emergency characterized by prolonged or successive seizures and often presents with symptoms too subtle to notice or easily misinterpreted as post-convulsive fatigue. This leads to delayed treatment and increased risks of neurological damage and high mortality. Current seizure detection technologies are primarily based on motion or full-head EEG, rendering them ineffective at detecting SE and impractical for at-home use in emergency scenarios, respectively. Our device is designed to be applied rapidly during the comedown of a convulsive seizure, collect EEG data, and feed it into our custom machine learning algorithm. The algorithm processes this data in real-time and alerts caregivers if the child remains in SE, thereby facilitating immediate medical decision-making. Currently, Epilog maintains a specificity of 0.88 and sensitivity of 0.95, delivering decisions within 15 seconds post-seizure. We have demonstrated clean EEG signal acquisition from eight standard electrode placements and bluetooth data transmission from eight channels with minimal delay. Our headband incorporates all necessary electrodes and adjustable positioning of the electrodes for different head sizes. Our unique gel case facilitates rapid electrode gelation in less than 10 seconds. Our most immediate goals are validating our fully integrated device and improving features that allow for robust, long-term use of Epilog. Epilog promises not just data, but peace of mind, and empowering caregivers to make informed life-saving decisions.

Team NG-LOOP: Katherine Han, Jeffrey Huang, Dahin Song, Stephanie Yoon

NG-LOOP

Nasogastric (NG) tube dislodgement occurs when the feeding tube tip becomes significantly displaced from its intended position in the stomach, causing fatal consequences such as aspiration pneumonia. Compared to the 50% dislodgement rate in the general patient population, infant patients are particularly affected ( >60%) due to their miniature anatomy and tendency to unknowingly tug on uncomfortable tubes. Our solution, the Nasogastric Lightweight Observation and Oversight Product (NG-LOOP) provides comprehensive protection from NG tube dislodgement. Physical stabilization is combined with sensor feedback to detect and manage downstream complications of tube dislodgement. The lightweight external bridle, printed with biocompatible Accura 25 and coated with hydrocolloid dressing for comfort and grip, can prevent dislodgement 100% of the time given a tonic force of 200g. The sensor feedback system uses a DRV5055 linear hall effect sensor with a preset difference threshold, coupled with an SMS alert and smart plug inactivation of the feeding pump. A sensitivity of 90% and specificity of 100% in dislodgement detection was achieved under various conditions, with all feedback mechanisms being initiated in response to 100% of threshold triggers. Future steps involve integration with hospital-grade feeding pumps, improving the user interface, and incorporating more sizes for diverse age inclusivity.

Photos courtesy of Afraah Shamim, Coordinator of Educational Laboratories in the Penn BE Labs. View more photos on the Penn BE Labs Instagram.

Senior Design (BE 4950 & 4960) is a two-semester capstone course taught by David Meaney, Solomon R. Pollack Professor in Bioengineering and Senior Associate Dean of Penn Engineering, Erin Berlew, Research Scientist in the Department of Orthopaedic Surgery and Lecturer in Bioengineering, and Dayo Adewole, Postdoctoral Fellow of Otorhinolaryngology (Head and Neck Surgery) in the Perelman School of Medicine. Read more stories featuring Senior Design in the BE Blog.

Illuminating the Unseen: Former Penn iGEM Team Publishes Award-Winning Optogenetic Device

Diagram of the optoPlateReader, a high-throughput, feedback-enabled optogenetics and spectroscopy device initially developed by Penn 2021 iGEM team.

For bioengineers today, light does more than illuminate microscopes. Stimulating cells with light waves, a field known as optogenetics, has opened new doors to understanding the molecular activity within cells, with potential applications in drug discovery and more.

Thanks to recent advances in optogenetic technology, much of which is cheap and open-source, more researchers than ever before can construct arrays capable of running multiple experiments at once, using different wavelengths of light. Computing languages like Python allow researchers to manipulate light sources and precisely control what happens in the many “wells” containing cells in a typical optogenetic experiment.

However, researchers have struggled to simultaneously gather data on all these experiments in real time. Collecting data manually comes with multiple disadvantages: transferring cells to a microscope may expose them to other, non-experimental sources of light. The time it takes to collect the data also makes it difficult to adjust metabolic conditions quickly and precisely in sample cells.

Now, a team of Penn Engineers has published a paper in Communications Biology, an open access journal in the Nature portfolio, outlining the first low-cost solution to this problem. The paper describes the development of optoPlateReader (or oPR), an open-source device that addresses the need for instrumentation to monitor optogenetic experiments in real time. The oPR could make possible features such as automated reading, writing and feedback in microwell plates for optogenetic experiments.

Left to right: Will Benman, Gloria Lee, Saachi Datta, Juliette Hooper, Grace Qian, David Gonzalez-Martinez, and Lukasz Bugaj (with Max).

The paper follows up on the award-winning work of six University of Pennsylvania alumni — Saachi Datta, M.D. Candidate at Stanford School of Medicine; Juliette Hooper, Programmer Analyst in Penn’s Perelman School of Medicine; Gabrielle Leavitt, M.D. Candidate at Temple University; Gloria Lee, graduate student at Oxford University; Grace Qian, Drug Excipient and Residual Analysis Research Co-op at GSK; and Lana Salloum, M.D. Candidate at Albert Einstein College of Medicine — who claimed multiple prizes at the 2021 International Genetically Engineered Machine Competition (iGEM) as Penn undergraduates.

The International Genetically Engineered Machine Competition (or iGEM) is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school students from around the world. Hundreds of interdisciplinary teams of students compete annually, combining molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.

The optoPlateReader was initially developed by Penn’s 2021 iGEM team, combining a light-stimulation device with a plate reader. At the iGEM competition, the invention took home Best Foundational Advance (best in track), Best Hardware (best from all undergraduate teams), and Best Presentation (best from all undergraduate teams), as well as a Gold Medal Distinction and inclusion in the Top 10 Overall and Top 10 Websites lists. (Read more about the 2021 iGEM team on the BE Blog.)

The original iGEM project focused on the design, construction, and testing of the hardware and software that make up the oPR, the focus of the new paper. After iGEM concluded, the team showed that the oPR could be used with real biological samples, such as cultures of bacteria. This work demonstrated that the oPR could be applied to real research questions, a necessary precursor to publication, and that the device could simultaneously monitor and manipulate living samples. 

The main application for the oPR is in metabolic production (such as the creation of pharmaceuticals and bio-fuels). The oPR is able to issue commands to cells via light but can also take live readings about their current state. In the oPR, certain colors of light cause cells to carry out different tasks, and optical measurements give information on growth rates and protein production rates.

In this way, the new device is able to support production processes that can adapt in real time to what cells need, altering their behavior to maximize yield. For example, if an experiment produces a product that is toxic to cells, the oPR could instruct those cells to “turn on” only when the population of cells is dense and “turn off” when the concentration of that product becomes toxic and the cellular population needs to recover. This ability to pivot in real time could assist industries that rely on bioproduction.

The main challenges in developing this device were in incorporating the many light emitting diodes (LEDs) and sensors into a tiny space, as well as insulating the sensors from the nearby LEDs to ensure that the measured light came from the sample and not from the instrument itself. The team also had to create software that could coordinate the function of nearly 100 different sets of LEDs and sensors. Going forward, the team hopes to spread the word about the open-source oPR to other researchers studying metabolic production to enable more efficient research.

Lukasz Bugaj, Assistant Professor in Bioengineering and senior author of the paper, served as the team’s mentor along with Brian Chow, formerly an Associate Professor in Bioengineering and a founding member of the iGEM program at MIT, and Jose Avalos, Associate Professor of Chemical and Biological Engineering at Princeton University.

Key to the project’s development was the guidance of Bioengineering graduate students Will Benman, David Gonzalez Martinez, and Gabrielle Ho, as well as that of Saurabh Malani, a graduate student at Princeton University.

Much of the original work was conducted in Penn Bioengineering’s Stephenson Foundation Educational Laboratory & Bio-MakerSpace, with important contributions made by Michael Patterson, Director of Educational Laboratories in Bioengineering, and Sevile Mannickarottu, Director of Technological Innovation and Entrepreneurship in Penn Engineering’s Entrepreneurship Program.

Read “High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates” in Communications Biology.

This project was supported by the Department of Bioengineering, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research (OVPR), and by funding from the National Institute of Health (NIH), the National Science Foundation (NSF), and the Department of Energy (DOE).

The iGEM program was created at the Massachusetts Institute of Technology in 2003. Read stories in the BE Blog featuring recent Penn iGEM teams here.

Accelerating CAR T Cell Therapy: Lipid Nanoparticles Speed Up Manufacturing

by Ian Scheffler

Visualization of a CAR T cell (in red) attacking a cancer cell (in blue) (Meletios Varras via Getty Images)

For patients with certain types of cancer, CAR T cell therapy has been nothing short of life changing. Developed in part by Carl June, Richard W. Vague Professor at Penn Medicine, and approved by the Food and Drug Administration (FDA) in 2017, CAR T cell therapy mobilizes patients’ own immune systems to fight lymphoma and leukemia, among other cancers.

However, the process for manufacturing CAR T cells themselves is time-consuming and costly, requiring multiple steps across days. The state of the art involves extracting patients’ T cells, then activating them with tiny magnetic beads, before giving the T cells genetic instructions to make chimeric antigen receptors (CARs), the specialized receptors that help T cells eliminate cancer cells.

Now, Penn Engineers have developed a novel method for manufacturing CAR T cells, one that takes just 24 hours and requires only one step, thanks to the use of lipid nanoparticles (LNPs), the potent delivery vehicles that played a critical role in the Moderna and Pfizer-BioNTech COVID-19 vaccines.

In a new paper in Advanced Materials, Michael J. Mitchell, Associate Professor in Bioengineering, describes the creation of “activating lipid nanoparticles” (aLNPs), which can activate T cells and deliver the genetic instructions for CARs in a single step, greatly simplifying  the CAR T cell manufacturing process. “We wanted to combine these two extremely promising areas of research,” says Ann Metzloff, a doctoral student in Bioengineering and NSF Graduate Research Fellow in the Mitchell lab and the paper’s lead author. “How could we apply lipid nanoparticles to CAR T cell therapy?”

Read the full story in Penn Engineering Today.

2024 Undergraduate Awards for Bioengineering Students

Georgia Georgostathi accepts the Wolf-Hallac Award from Dean Vijay Kumar.

Each spring, awards are given to undergraduate students in the School of Engineering and Applied Science in recognition of outstanding scholarly achievements and service to the School and University community. The 2024 award recipients were recognized in a ceremony held on Wednesday, March 27, 2024 at the Penn Museum.

Read the full list of Bioengineering undergraduate award winners below.

The Wolf-Hallac Award: Georgia Georgostathi. This award was established in October 2000 to recognize the graduating female senior from across Penn Engineering’s departments who is seen as a role model, has achieved a high GPA (in the top 10% of their class), and who has demonstrated a commitment to school and/or community.

Alexandra Dumas accepts the Maddie Magee Award for Undergraduate Excellence.

The Maddie Magee Award for Undergraduate Excellence: Alexandra Dumas. This award is given to a Penn Engineering senior who best exemplifies the energy, enthusiasm, and excellence of Penn Engineering alumna Madison “Maddie” N. Magee (MEAM BS ’21, BE MS ’21).

The Hugo Otto Wolf Memorial Prize: Jude Barakat & Dori Xu. This prize is awarded to one or more members of each department’s senior class, distinguishing students who meet with great approval of the professors at large through “thoroughness and originality” in their work.

The Herman P. Schwan Award: Angela Song. This department award honors a graduating senior who demonstrates the “highest standards of scholarship and academic achievement.”

Penn Engineering Exceptional Service Awards recognize students for their outstanding service to the University and their larger communities: Srish Chenna, Daniel Ghaderi, Taehwan Kim and Daphne Nie.

Chaitanya Karimanasseri accepts the Bioengineering Student Leadership Award.

The Bioengineering Student Leadership Award: Chaitanya Karimanasseri. This award is given annually to a student in Bioengineering who has demonstrated, through a combination of academic performance, service, leadership, and personal qualities, that they will be a credit to the Department, the School, and the University.

Additionally, the Bioengineering Department  also presents a single lab group with the Albert Giandomenico Award which reflects their “teamwork, leadership, creativity, and knowledge applied to discovery-based learning in the laboratory.” This year’s group consists of Alexandra Dumas, Georgia Georgostathi, Daphne Nie and Angela Song.

A full list of Penn Engineering award descriptions and recipients can be found here.

BE award winners enjoy the ceremony reception in the Penn Museum.

2023 PIP-Winning Team Sonura: Where Are They Now?

Members of Team Sonura: Tifara Boyce, Gabriela Cano, Gabriella Daltoso, Sophie Ishiwari, & Caroline Magro (credit: Penn BE Labs)

In April 2023, three President’s Prize-winning teams were selected from an application pool of 76 to develop post-graduation projects that make a positive, lasting difference in the world. Each project received $100,000 and a $50,000 living stipend per team member.

The winning projects include Sonura, the winner of the President’s Innovation Prize (PIP), who are working to improve infant development by reducing harsh noise exposure in neonatal intensive care units. To accomplish this, they’ve developed a noise-shielding beanie that can also relay audio messages from parents.

Sonura, a bioengineering quintet, developed a beanie that shields newborns from the harsh noise environments present in neonatal intensive care units (NICUs)—a known threat to infant wellbeing—and also supports cognitive development by relaying audio messages from their parents.

Since graduating from the School of Engineering and Applied Science, the team of Tifara Boyce, Gabriela Cano, Gabriella Daltoso, Sophie Ishiwari, and Caroline Magro, has collaborated with more than 50 NICU teams nationwide. They have been helped by the Intensive Care Nursery (ICN) at the Hospital of the University of Pennsylvania (HUP), which shares Sonura’s goal of reducing NICU noise. “Infant development is at the center of all activities within the HUP ICN,” note Daltoso and Ishiwari. “Even at the most granular level, like how each trash can has a sign urging you to shut it quietly, commitment to care is evident, a core tenet we strive to embody as we continue to grow.” 

An initial challenge for the team was the inability to access the NICU, crucial for understanding how the beanie integrates with existing workflows. Collaboration with the HUP clinical team was key, as feedback from a range of NICU professionals has helped them refine their prototype.

In the past year, the team has participated in the University of Toronto’s Creative Destruction Lab and the Venture Initiation Program at Penn’s Venture Lab, and received funding from the Pennsylvania Pediatric Device Consortium. “These experiences have greatly expanded our perspective,” Cano says.

With regular communication with mentors from Penn Engineering and physicians from HUP, Children’s Hospital of Philadelphia, and other institutes, Sonura is looking ahead as they approach the milestone of completing the FDA’s regulatory clearance process within the year. They will begin piloting their beanie with the backing of NICU teams, further contributing to neonatal care.

Read the full story and watch a video about Sonura’s progress in Penn Today.

Read more stories featuring Sonura in the BE Blog.

Precision Pulmonary Medicine: Penn Engineers Target Lung Disease with Lipid Nanoparticles

by Ian Scheffler

Penn Engineers have developed a way to target lung diseases, including lung cancer, with lipid nanoparticles (LNPs). (wildpixel via Getty Images)

Penn Engineers have developed a new means of targeting the lungs with lipid nanoparticles (LNPs), the miniscule capsules used by the Moderna and Pfizer-BioNTech COVID-19 vaccines to deliver mRNA, opening the door to novel treatments for pulmonary diseases like cystic fibrosis. 

In a paper in Nature Communications, Michael J. Mitchell, Associate Professor in the Department of Bioengineering, demonstrates a new method for efficiently determining which LNPs are likely to bind to the lungs, rather than the liver. “The way the liver is designed,” says Mitchell, “LNPs tend to filter into hepatic cells, and struggle to arrive anywhere else. Being able to target the lungs is potentially life-changing for someone with lung cancer or cystic fibrosis.”

Previous studies have shown that cationic lipids — lipids that are positively charged — are more likely to successfully deliver their contents to lung tissue. “However, the commercial cationic lipids are usually highly positively charged and toxic,” says Lulu Xue, a postdoctoral fellow in the Mitchell Lab and the paper’s first author. Since cell membranes are negatively charged, lipids with too strong a positive charge can literally rip apart target cells.  

Typically, it would require hundreds of mice to individually test the members of a “library” of LNPs — chemical variants with different structures and properties — to find one with a low charge that has a higher likelihood of delivering a medicinal payload to the lungs.

Instead, Xue, Mitchell and their collaborators used what is known as “barcoded DNA” (b-DNA) to tag each LNP with a unique strand of genetic material, so that they could inject a pool of LNPs into just a handful of animal models. Then, once the LNPs had propagated to different organs, the b-DNA could be scanned, like an item at the supermarket, to determine which LNPs wound up in the lungs. 

Read the full story in Penn Engineering Today.