Accelerating CAR T Cell Therapy: Lipid Nanoparticles Speed Up Manufacturing

by Ian Scheffler

Visualization of a CAR T cell (in red) attacking a cancer cell (in blue) (Meletios Varras via Getty Images)

For patients with certain types of cancer, CAR T cell therapy has been nothing short of life changing. Developed in part by Carl June, Richard W. Vague Professor at Penn Medicine, and approved by the Food and Drug Administration (FDA) in 2017, CAR T cell therapy mobilizes patients’ own immune systems to fight lymphoma and leukemia, among other cancers.

However, the process for manufacturing CAR T cells themselves is time-consuming and costly, requiring multiple steps across days. The state of the art involves extracting patients’ T cells, then activating them with tiny magnetic beads, before giving the T cells genetic instructions to make chimeric antigen receptors (CARs), the specialized receptors that help T cells eliminate cancer cells.

Now, Penn Engineers have developed a novel method for manufacturing CAR T cells, one that takes just 24 hours and requires only one step, thanks to the use of lipid nanoparticles (LNPs), the potent delivery vehicles that played a critical role in the Moderna and Pfizer-BioNTech COVID-19 vaccines.

In a new paper in Advanced Materials, Michael J. Mitchell, Associate Professor in Bioengineering, describes the creation of “activating lipid nanoparticles” (aLNPs), which can activate T cells and deliver the genetic instructions for CARs in a single step, greatly simplifying  the CAR T cell manufacturing process. “We wanted to combine these two extremely promising areas of research,” says Ann Metzloff, a doctoral student in Bioengineering and NSF Graduate Research Fellow in the Mitchell lab and the paper’s lead author. “How could we apply lipid nanoparticles to CAR T cell therapy?”

Read the full story in Penn Engineering Today.

2023 PIP-Winning Team Sonura: Where Are They Now?

Members of Team Sonura: Tifara Boyce, Gabriela Cano, Gabriella Daltoso, Sophie Ishiwari, & Caroline Magro (credit: Penn BE Labs)

In April 2023, three President’s Prize-winning teams were selected from an application pool of 76 to develop post-graduation projects that make a positive, lasting difference in the world. Each project received $100,000 and a $50,000 living stipend per team member.

The winning projects include Sonura, the winner of the President’s Innovation Prize (PIP), who are working to improve infant development by reducing harsh noise exposure in neonatal intensive care units. To accomplish this, they’ve developed a noise-shielding beanie that can also relay audio messages from parents.

Sonura, a bioengineering quintet, developed a beanie that shields newborns from the harsh noise environments present in neonatal intensive care units (NICUs)—a known threat to infant wellbeing—and also supports cognitive development by relaying audio messages from their parents.

Since graduating from the School of Engineering and Applied Science, the team of Tifara Boyce, Gabriela Cano, Gabriella Daltoso, Sophie Ishiwari, and Caroline Magro, has collaborated with more than 50 NICU teams nationwide. They have been helped by the Intensive Care Nursery (ICN) at the Hospital of the University of Pennsylvania (HUP), which shares Sonura’s goal of reducing NICU noise. “Infant development is at the center of all activities within the HUP ICN,” note Daltoso and Ishiwari. “Even at the most granular level, like how each trash can has a sign urging you to shut it quietly, commitment to care is evident, a core tenet we strive to embody as we continue to grow.” 

An initial challenge for the team was the inability to access the NICU, crucial for understanding how the beanie integrates with existing workflows. Collaboration with the HUP clinical team was key, as feedback from a range of NICU professionals has helped them refine their prototype.

In the past year, the team has participated in the University of Toronto’s Creative Destruction Lab and the Venture Initiation Program at Penn’s Venture Lab, and received funding from the Pennsylvania Pediatric Device Consortium. “These experiences have greatly expanded our perspective,” Cano says.

With regular communication with mentors from Penn Engineering and physicians from HUP, Children’s Hospital of Philadelphia, and other institutes, Sonura is looking ahead as they approach the milestone of completing the FDA’s regulatory clearance process within the year. They will begin piloting their beanie with the backing of NICU teams, further contributing to neonatal care.

Read the full story and watch a video about Sonura’s progress in Penn Today.

Read more stories featuring Sonura in the BE Blog.

Precision Pulmonary Medicine: Penn Engineers Target Lung Disease with Lipid Nanoparticles

by Ian Scheffler

Penn Engineers have developed a way to target lung diseases, including lung cancer, with lipid nanoparticles (LNPs). (wildpixel via Getty Images)

Penn Engineers have developed a new means of targeting the lungs with lipid nanoparticles (LNPs), the miniscule capsules used by the Moderna and Pfizer-BioNTech COVID-19 vaccines to deliver mRNA, opening the door to novel treatments for pulmonary diseases like cystic fibrosis. 

In a paper in Nature Communications, Michael J. Mitchell, Associate Professor in the Department of Bioengineering, demonstrates a new method for efficiently determining which LNPs are likely to bind to the lungs, rather than the liver. “The way the liver is designed,” says Mitchell, “LNPs tend to filter into hepatic cells, and struggle to arrive anywhere else. Being able to target the lungs is potentially life-changing for someone with lung cancer or cystic fibrosis.”

Previous studies have shown that cationic lipids — lipids that are positively charged — are more likely to successfully deliver their contents to lung tissue. “However, the commercial cationic lipids are usually highly positively charged and toxic,” says Lulu Xue, a postdoctoral fellow in the Mitchell Lab and the paper’s first author. Since cell membranes are negatively charged, lipids with too strong a positive charge can literally rip apart target cells.  

Typically, it would require hundreds of mice to individually test the members of a “library” of LNPs — chemical variants with different structures and properties — to find one with a low charge that has a higher likelihood of delivering a medicinal payload to the lungs.

Instead, Xue, Mitchell and their collaborators used what is known as “barcoded DNA” (b-DNA) to tag each LNP with a unique strand of genetic material, so that they could inject a pool of LNPs into just a handful of animal models. Then, once the LNPs had propagated to different organs, the b-DNA could be scanned, like an item at the supermarket, to determine which LNPs wound up in the lungs. 

Read the full story in Penn Engineering Today.

A Moonshot for Obesity: New Molecules, Inspired by Space Shuttles, Advance Lipid Nanoparticle Delivery for Weight Control

by Ian Scheffler

Like space shuttles using booster rockets to breach the atmosphere, lipid nanoparticles (LNPs) equipped with the new molecule more successfully deliver medicinal payloads. (Love Employee via Getty Images)

Inspired by the design of space shuttles, Penn Engineering researchers have invented a new way to synthesize a key component of lipid nanoparticles (LNPs), the revolutionary delivery vehicle for mRNA treatments including the Pfizer-BioNTech and Moderna COVID-19 vaccines, simplifying the manufacture of LNPs while boosting their efficacy at delivering mRNA to cells for medicinal purposes.

In a paper in Nature Communications, Michael J. Mitchell, Associate Professor in the Department of Bioengineering, describes a new way to synthesize ionizable lipidoids, key chemical components of LNPs that help protect and deliver medicinal payloads. For this paper, Mitchell and his co-authors tested delivery of an mRNA drug for treating obesity and gene-editing tools for treating genetic disease. 

Previous experiments have shown that lipidoids with branched tails perform better at delivering mRNA to cells, but the methods for creating these molecules are time- and cost-intensive. “We offer a novel construction strategy for rapid and cost-efficient synthesis of these lipidoids,” says Xuexiang Han, a postdoctoral student in the Mitchell Lab and the paper’s co-first author. 

Read the full story in Penn Engineering Today.

Beyond Bias: The Annual Women in Data Science Conference Unites Women across Penn

by Ian Scheffler

Lasya Sreepada, a doctoral student in Bioengineering (BE), addresses the crowd. (Image: Lamont Abrams)

In Invisible Women: Data Bias in a World Designed for Men, Caroline Criado Perez notes that the default perspective for virtually all data collection and analysis is male. (Hence crash test dummies being designed to mimic male bodies, air conditioning systems relying on a model of the male metabolism, and women’s unique heart attack symptoms other than chest pain — like nausea and back pain — often going unrecognized, even by women experiencing them.)

Nearly a decade ago, a group of women at Stanford decided to address this issue by convening a one-day technical conference on data science; that meeting has now grown into a worldwide movement, with hundreds of sister conferences each year — a tradition in which Penn Engineering is proud to take part.

By 2030, Women in Data Science (WiDS), the non-profit that spun out of that early meeting, hopes to achieve 30% representation of women in data science globally. For Susan Davidson, Weiss Professor in Computer and Information Science (CIS) and a co-chair of the annual WiDS @ Penn conference, the benefits of participating in WiDS go beyond just networking. “To see women who are successful in your field is extremely encouraging,” says Davidson.

This year, Penn Engineering partnered with Analytics at Wharton (AAW) and the Penn Museum to co-host the fifth annual WiDS @ Penn conference, bringing together dozens of women from across the University and beyond to learn about the latest applications of data science in topics as diverse as online education and health care.

“It gave me the opportunity to not only show others what it means to be a data scientist,” says Lasya Sreepada, a doctoral student in Bioengineering, who presented her work studying early-onset Alzheimer’s disease using large data sets, “but also what it means to be a woman applying data science to integrate multiple disciplines spanning neuroscience, genomics and radiology.”

Penn Engineering students from all levels of their academic careers participated, from Aashika Vishwanath, a sophomore in CIS, president of the Wharton Undergraduate Data Analytics Club and senior data science consultant at Wharton Analytics Fellows, who shared her work developing an AI-powered teaching assistant, to Betty Xu, a master’s student in Electrical and Systems Engineering, who collaborated with the Wharton Neuroscience Initiative to study financial decision making. “Data can help us know the unknown in every field,” says Xu. “You can be a great data scientist no matter your background.”

Read the full story in Penn Engineering Today.

“Switchable” Bispecific Antibodies Pave Way for Safer Cancer Treatment

by Nathi Magubane

Bispecific T cell engagers are emerging as a powerful class of immunotherapy to treat cancer but are sometimes hindered by unwanted outcomes, such as on-target, off-tumor toxicity; cytokine release syndrome; and neurotoxicity. Now, researchers Penn researchers have developed a novel “switchable” bispecific T cell engager that mitigates these negative effects by co-opting a drug already approved by the FDA. (Image: iStock / CIPhotos)

In the ever-evolving battle against cancer, immunotherapy presents a turning point. It began with harnessing the body’s immune system to fight cancer, a concept rooted more than a century ago but only gaining significant momentum in recent years. Pioneering this shift were therapies like CAR T cell therapy, which reprograms a patient’s T cells to attack cancer cells. Within this domain, bispecific T cell engagers, or bispecific antibodies, have emerged as effective treatments for many blood-borne cancers in the clinic and are being evaluated for solid tumor therapy.

These antibodies simultaneously latch onto both a cancer cell and a T cell, effectively bridging the gap between the two. This proximity triggers the T cells to unleash their lethal arsenal, thereby killing the cancer cells. However, bispecific T cell engagers, like many cancer therapies, face hurdles such as cell-specific targeting limitations, known as on-target off-tumor toxicity, which means the tumor is correctly targeted but so are other healthy cells in the body, leading to healthy tissue damage. Moreover, bispecific antibodies may also lead to immune system overactivation, a precursor for cytokine release syndrome (CRS), and neurotoxicity.

Now, researchers led by Michael Mitchell of the University of Pennsylvania have found a way to circumvent many of these deleterious effects by developing a bispecific T cell nanoengager that is equipped with an “off switch.” Their findings are published in Nature Biomedical Engineering.

“We’re excited to show that bispecific antibodies can be tweaked in a way that allows us to tap into their powerful cancer-killing potential without inducing toxicity to healthy tissues,” says Mitchell, associate professor of bioengineering at Penn’s School of Engineering and Applied Science. “This new controllable drug-delivery mechanism, which we call switchable bispecific T cell nanoengagers, or SiTEs, adds this switchable component to the antibody via administering an FDA-approved small-molecule drug, amantadine.”

Read the full story in Penn Today.

Jenny Jiang Wins CZI Grant to Investigate the Potential Trigger for Neurodegenerative Diseases

Jenny Jiang, Ph.D.

TDP-43 may be one of the most dangerous proteins in the human body, implicated in neurodegenerative conditions like ALS and Alzheimer’s disease. But the protein remains mysterious: how TDP-43 interacts with the immune system, for instance, is still unclear. 

Now, Ning Jenny Jiang, J. Peter and Geri Skirkanich Associate Professor of Innovation in Bioengineering, has been selected for the Collaborative Pairs Pilot Project Awards, sponsored by the Chan Zuckerberg Initiative (CZI), to investigate the relationship between TDP-43 and the immune system. 

Launched in 2018, the Collaborative Pairs Pilot Project Awards support pairs of investigators to explore “innovative, interdisciplinary approaches to address critical challenges in the fields of neurodegenerative disease and fundamental neuroscience.” Professor Jiang will partner with Pietro Fratta, MRC Senior Clinical Fellow and MNDA Lady Edith Wolfson Fellow at the University College London Queen Square Institute of Neurology.

The TDP-43 protein is associated with neurodegenerative diseases affecting the central nervous system, including ALS and Alzehimer’s disease. While the loss of neurons and muscle degeneration cause the progressive symptoms, the diseases themselves may be a previously unidentified trigger for abnormal immune system activity. 

One possible link is the intracellular mislocalization of TDP-43 (known as TDP-43 proteinopathy), when the protein winds up in the wrong location, which the Jiang and Fratta Labs will investigate. Successfully proving this link could result in potentially game-changing new therapies for these neurodegenerative diseases. 

The Jiang Lab at Penn Engineering specializes in systems immunology, using high-throughput sequencing and single-cell and quantitative analysis to understand how the immune system develops and ages, as well as the molecular signatures of immune related diseases. Jiang joined Penn Bioengineering in 2021. 

Since arriving on campus, Jiang has teamed with the recently formed Penn Anti-Cancer Engineering Center (PACE), which seeks to understand the forces that determine how cancer grows and spreads, and Engineers in the Center for Precision Engineering (CPE4H), which focuses on innovations in diagnostics and delivery in the development of customizable biomaterials and implantable devices for individualized care. 

Jiang was elected a member of the American Institute for Medical and Biological Engineering (AIMBE) College of Fellows in 2021, and has previously won multiple prestigious awards including the NSF CAREER, a Cancer Research Institute Lloyd J. Old STAR Award, and a CZI Neurodegeneration Challenge Network Ben Barres Early Career Acceleration Award.

Jiang is a leader in high-throughput and high-dimensional analysis of T cells, a type of white blood cell crucial to the functioning of a healthy immune system. A recent study in Nature Immunology described the Jiang Lab’s TetTCR-SeqHD technology, the first approach to provide a multifaceted analysis of antigen-specific T cells in a high-throughput manner.

The CZI Collaborative Pairs Pilot Project Awards will provide $200,000 of funding over 18 months with a chance to advance to the second phase of $3.2 million in funding over a four-year period. 

Read the full list of grantees on the CZI’s Neurodegeneration Challenge Network (NDCN) Projects website here.

New Chip Opens Door to AI Computing at Light Speed

by Ian Scheffler

Computing at the speed of light may reduce the energy cost of training AI. (Narongrit Doungmanee via Getty Images)

Penn Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.

The silicon-photonic (SiPh) chip’s design is the first to bring together Benjamin Franklin Medal Laureate and H. Nedwill Ramsey Professor Nader Engheta’s pioneering research in manipulating materials at the nanoscale to perform mathematical computations using light — the fastest possible means of communication — with the SiPh platform, which uses silicon, the cheap, abundant element used to mass-produce computer chips.

The interaction of light waves with matter represents one possible avenue for developing computers that supersede the limitations of today’s chips, which are essentially based on the same principles as chips from the earliest days of the computing revolution in the 1960s.

In a paper in Nature Photonics, Engheta’s group, together with that of Firooz Aflatouni, Associate Professor in Electrical and Systems Engineering, describes the development of the new chip. “We decided to join forces,” says Engheta, leveraging the fact that Aflatouni’s research group has pioneered nanoscale silicon devices.

Their goal was to develop a platform for performing what is known as vector-matrix multiplication, a core mathematical operation in the development and function of neural networks, the computer architecture that powers today’s AI tools.

Read the full story in Penn Engineering Today.

Nader Engheta is the H. Nedwill Ramsey Professor in Electrical and Systems Engineering, Bioengineering, Materials Science and Engineering, and in Physics and Astronomy.

What Makes a Breakthrough? “Eight Steps Back” Before Making it to the Finish Lit

by Meagan Raeke

(From left to right) Breakthrough Prize recipients Drew Weissman, Virginia M-Y Lee, Katalin Karikó, and Carl June at a reception on Feb. 13. (Image: Courtesy of Penn Medicine News)

In popular culture, scientific discovery is often portrayed in “Eureka!” moments of sudden realization: a lightbulb moment, coming sometimes by accident. But in real life—and in Penn Medicine’s rich history as a scientific innovator for more than 250 years—scientific breakthroughs can never truly be distilled down to a single, “ah-ha” moment. They’re the result of years of hard work, perseverance, and determination to keep going, despite repeated, often discouraging, barriers and setbacks. 

“Research is [like taking], four, or six, or eight steps back, and then a little stumble forward,” said Drew Weissman, MD, PhD, the Roberts Family Professor of Vaccine Research. “You keep doing that over and over and somehow, rarely, you can get to the top of the step.” 

For Weissman and his research partner, Katalin Karikó, PhD, an adjunct professor of Neurosurgery, that persistence—documented in thousands of news stories across the globe—led to the mRNA technology that enabled two lifesaving COVID-19 vaccines, earning the duo numerous accolades, including the highest scientific honor, the 2023 Nobel Prize in Medicine

Weissman and Karikó were also the 2022 recipients of the Breakthrough Prize in Life Sciences, the world’s largest science awards, popularly known as the “Oscars of Science.” Founded in 2012 by a group of web and tech luminaries including Google co-founder Sergey Brin and Meta CEO Mark Zuckerberg, the Breakthrough Prizes recognize “the world’s top scientists working in the fundamental sciences—the disciplines that ask the biggest questions and find the deepest explanations.” With six total winners, including four from the Perelman School of Medicine (PSOM), Penn stands alongside Harvard and MIT as the institutions whose researchers have been honored with the most Breakthrough Prizes. 

Virginia M.Y. Lee, PhD, the John H. Ware 3rd Professor in Alzheimer’s Research, was awarded the Prize in 2020 for discovering how different forms of misfolded proteins can move from cell to cell and lead to neurodegenerative disease progression. Carl June, MD, the Richard W. Vague Professor in Immunotherapy, is the most recent recipient and will be recognized at a star-studded red-carpet event in April for pioneering the development of CAR T cell therapy, which programs patients’ own immune cells to fight their cancer.

The four PSOM Breakthrough Prize recipients were honored on Tuesday, Feb. 13, 2024, when a new large-scale installation was unveiled in the lobby of the Biomedical Research Building to celebrate each laurate and their life-changing discoveries. During a light-hearted panel discussion, the honorees shared how a clear purpose, dogged determination, and a good sense of humor enabled their momentum forward. 

Read the full story in Penn Medicine News.

Carl June and Jon Epstein are members of the Penn Bioengineering Graduate Group. Read more stories featuring them in the BE Blog here and here, respectively.

Weissman presented the Department of Bioengineering’s 2022 Herman P. Schwan Distinguished Lecture: “Nucleoside-modified mRNA-LNP therapeutics.” Read more stories featuring Weissman in the BE Blog here.

Illuminating the Invisible: Bringing the Smallest Protein Clusters into Focus

by Ian Scheffler

The bright white spots represent tiny clusters of proteins detected by CluMPS. (Photo by: Thomas Mumford)

Penn Engineers have pioneered a new way to visualize the smallest protein clusters, skirting the physical limitations of light-powered microscopes and opening new avenues for detecting the proteins implicated in diseases like Alzheimer’s and testing new treatments.

In a paper in Cell Systems, Lukasz Bugaj, Assistant Professor in Bioengineering, describes the creation of CluMPS, or Clusters Magnified by Phase Separation, a molecular tool that activates by forming conspicuous blobs in the presence of target protein clusters as small as just a few nanometers. In essence, CluMPS functions like an on/off switch that responds to the presence of clusters of the protein it is programmed to detect.

Normally, says Bugaj, detecting such clusters requires laborious techniques. “With CluMPS, you don’t need anything beyond the standard lab microscope.” The tool fuses with the target protein to form condensates orders of magnitude larger than the protein clusters themselves that resemble the colorful blobs in a lava lamp. “We think the simplicity of the approach is one of its main benefits,” says Bugaj. “You don’t need specialized skills or equipment to quickly see whether there are small clusters in your cells.”

Read the full story in Penn Engineering Today.