‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’

William H. Peranteau, Michael J. Mitchell, Margaret Billingsley, Meghana Kashyap, and Rachel Riley (Clockwise from top left)

As COVID-19 vaccines roll out, the concept of using mRNA to fend off viruses has become a part of the public dialogue. However, scientists have been researching how mRNA can be used to in life-saving medical treatments well before the pandemic.

The “m” in “mRNA” is for “messenger.” A single-stranded counterpart to DNA, it translates the genetic code into the production of proteins, the building blocks of life. The Moderna and Pfizer COVID-19 vaccines work by introducing mRNA sequences that act as a set of instructions for the body to produce proteins that mimic parts of the virus itself. This prepares the body’s immune response to recognize the real virus and fight it off.

Because it can spur the production of proteins that the body can’t make on its own, mRNA therapies also have the potential to slow or prevent genetic diseases that develop before birth, such as cystic fibrosis and sickle-cell anemia.

However, because mRNA is a relatively unstable molecule that degrades quickly, it needs to be packaged in a way that maintains its integrity as its delivered to the cells of a developing fetus.

To solve this challenge, Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering, is researching the use of lipid nanoparticles as packages that transport mRNA into the cell. He and William H. Peranteau, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at Children’s Hospital of Philadelphia, recently co-authored a “proof-of-concept” paper investigating this technique.

In this study, published in Science Advances, Mitchel examined which nanoparticles were optimal in the transport of mRNA to fetal mice. Although no disease or organ was targeted in this study, the ability to administer mRNA to a mouse while still in the womb was demonstrated, and the results are promising for the next stages of targeted disease prevention in humans.

Mitchel spoke with Tom Avril at The Philadelphia Inquirer about the mouse study and its implications for treatment of rare infant diseases through the use of mRNA, ‘the messenger of life.’

Penn bioengineering professor Michael J. Mitchell, the other senior author of the mouse study, tested various combinations of lipids to see which would work best.

The appeal of the fatty substances is that they are biocompatible. In the vaccines, for example, two of the four lipids used to make the delivery spheres are identical to lipids found in the membranes of human cells — including plain old cholesterol.

When injected, the spheres, called nanoparticles, are engulfed by the person’s cells and then deposit their cargo, the RNA molecules, inside. The cells respond by making the proteins, just as they make proteins by following the instructions in the person’s own RNA. (Important reminder: The RNA in the vaccines cannot become part of your DNA.)

Among the different lipid combinations that Mitchell and his lab members tested, some were better at delivering their cargo to specific organs, such as the liver and lungs, meaning they could be a good vehicle for treating disease in those tissues.

Continue reading Tom Avril’s ‘RNA worked for COVID-19 vaccines. Could it be used to treat cancer and rare childhood diseases?’ at The Philadelphia Inquirer.

Penn Engineering and CHOP Researchers Identify Nanoparticles that Could Be Used in Therapeutic mRNA Delivery before Birth

by Evan Lerner

William H. Peranteau, Michael J. Mitchell, Margaret Billingsley, Meghana Kashyap, and Rachel Riley (Clockwise from top left)

Researchers at Children’s Hospital of Philadelphia and the School of Engineering and Applied Science at the University of Pennsylvania have identified ionizable lipid nanoparticles that could be used to deliver mRNA as part of fetal therapy. The proof-of-concept study, published today in Science Advances, engineered and screened a number of lipid nanoparticle formulations for targeting mouse fetal organs and has laid the groundwork for testing potential therapies to treat genetic diseases before birth.

“This is an important first step in identifying nonviral mediated approaches for delivering cutting-edge therapies before birth,” said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of General, Thoracic and Fetal Surgery and the Adzick-McCausland Distinguished Chair in Fetal and Pediatric Surgery at CHOP. “These lipid nanoparticles may provide a platform for in utero mRNA delivery, which would be used in therapies like fetal protein replacement and gene editing.”

Michael J. Mitchell, Skirkanich Assistant Professor of Innovation in Penn Engineering’s Department of Bioengineering, is the other co-senior author of the study. The co-first authors are Mitchell Lab members Rachel Riley, a postdoctoral fellow, and Margaret Billingsley, a graduate student, and Peranteau Lab member Meghana Kashyap, a research fellow.

Recent advances in DNA sequencing technology and prenatal diagnostics have made it possible to diagnose many genetic diseases before birth. Some of these diseases are treated by protein or enzyme replacement therapies after birth, but by then, some of the damaging effects of the disease have taken hold. Thus, applying therapies while the patient is still in the womb has the potential to be more effective for some conditions. The small fetal size allows for maximal therapeutic dosing, and the immature fetal immune system may be more tolerant of replacement therapy.

Read the full story in Penn Engineering Today.

NB: Rachel Riley is now Assistant Professor in Biomedical Engineering at Rowan University.

Penn Bioengineering Postdoc Rachel Riley Named Assistant Professor at Rowan University

Rachel Riley, Ph.D.

The Department of Bioengineering is proud to congratulate Postdoctoral Fellow Rachel Riley on her appointment as an Assistant Professor in Biomedical Engineering at Rowan University starting September 2020.

Originally from Matawan, NJ, Riley has been an NIH Postdoctoral Fellow in the Mitchell Lab since 2018. Her move to a faculty position at Rowan marks a return, as she received her B.S. in Civil and Environmental Engineering there in 2012. Riley went on to receive her Ph.D. in Biomedical Engineering in 2018 at the University of Delaware with Emily Day, Ph.D. before joining the lab of Michael J. Mitchell, Ph.D., Skirkanich Assistant Professor of Innovation, later that year. The Mitchell Lab’s research lies at the interface of biomaterials science, drug delivery, and cellular and molecular bioengineering to fundamentally understand and therapeutically target biological barriers.

“Rachel has had a prolific academic career at the University of Delaware and at Penn, launching several exciting research projects and mentoring the next generation of STEM researchers,” Mitchell says. “I’m very hopeful that her new position as an Assistant Professor of Biomedical Engineering at Rowan University will permit her to engineer new drug delivery technologies for women’s health applications.”

Research in the Riley Lab at Rowan will explore how nanoparticle drug delivery technologies can be engineered specifically for applications in women’s health. They will use nanoparticles as tools to study and treat gynecological cancers, fetal diseases, and pregnancy complications. Riley’s ultimate goal is to gain a fundamental understanding of how nanoparticle structure influences delivery to gynecological tissues to enable them to take an engineering approach to tackle new applications in women’s health.

Riley says that she is committed to supporting women and minorities in STEM disciplines and she looks forward to continuing collaborations with Penn and starting new collaborations with researchers at Cooper Medical School at Rowan University (CMSRU). Congratulations, Dr. Riley!