Penn’s 2021 iGEM Team Takes Home Multiple Prizes

Four of Penn’s 2021 iGEM team (left to right): Juliette Hooper, Grace Qian, Saachi Datta, and Gloria Lee.

The University of Pennsylvania’s 2021 iGEM team has been awarded several distinctions in this year’s highly competitive iGEM Competition. The International Genetically Engineered Machine Competition is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school level students from around the world. Each year, hundreds of interdisciplinary teams of students combine molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.

The Penn team’s project, “OptoReader,” is a combined light-simulation device and plate reader, which makes optogenetic experiments more powerful and accessible. The abstract reads:

“Metabolic engineering has the potential to change the world, and optogenetic tools can make metabolic engineering research easier by providing spatiotemporal control over cells. However, current optogenetic experiments are low-throughput, expensive, and laborious, which makes them inaccessible to many. To tackle this problem, we combined a light-stimulation device with a plate reader, creating our OptoReader. This device allows us to automate ~100 complex optogenetic experiments at the same time. Because it is open source and inexpensive, our device would make optogenetic experiments more efficient and available to all.”

Watch the team’s presentation on OptoReader here.

This year’s Penn team was mentored by Lukasz Bugaj, Assistant Professor in Bioengineering. In addition, the team was supported by Brian Chow, Associate Professor in Bioengineering. Chow has supported previous undergraduate iGEM teams at Penn, and was involved in the creation of the iGEM program during his time as a graduate student at MIT.

OptoReader took home the top prizes in three of the four categories in which it was nominated. These prizes include:

  • Best Foundational Advance (best in track)
  • Best Hardware (best from all undergraduate teams)
  • Best Presentation (best from all undergraduate teams)

They were also awarded a Gold Medal Distinction and were included in the Top 10 Overall (from all undergraduate teams, and the only team from the United States to make the top 10) and Top 10 Websites (from all undergraduate teams).

The awards were announced during iGEM’s online Jamboree Award Ceremony on November 14, 2021 (watch the full award ceremony here).

In addition to the outstanding awards recognition, OptoReader was also selected for an iGEM Impact Grant which awards teams $2,500 to continue development of their projects. This new initiative from the iGEM Foundation was announced earlier this year, and with the support of the Frederick Gardner Cottrell Foundation, is distributing a total of $225,000 in grant funds to 90 iGEM teams during the 2021 competition season. Learn more about the Impact Grant and read the full list of winning teams here.

Penn’s 2021 iGEM team was made up of an interdisciplinary group of women undergraduates from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS):

  • Saachi Datta (B.A. in Biology and Religious Studies 2021)
  • Juliette Hooper (B.S.E. and M.S.E. in Bioengineering 2022)
  • Gabrielle Leavitt (B.S.E. in Bioengineering 2021 and current Master’s student in Bioengineering)
  • Gloria Lee (B.A. in Physics and B.S.E. in Bioengineering 2023)
  • Grace Qian (B.S.E. in Bioengineering 2023)
  • Lana Salloum (B.A. in Neuroscience 2022)

They were mentored by three doctoral students in Bioengineering: Will Benman (Bugaj Lab), David Gonzalez Martinez (Bugaj Lab), Gabrielle Ho (Chow Lab). Saurabh Malani, a graduate student in the Avalos Lab at Prince University, was also very involved in mentoring the team.

OptoReader

The graduate mentors were instrumental in quickly bringing the undergraduates up to speed on a diverse array of skills needed to accomplish this project including circuit design, optics, optogenetics, programming, and additive manufacturing. They then coached the team through building and testing prototypes, as well as accomplishing other objectives required for success at iGEM. These other objectives included establishing collaborations with other iGEM teams, performing outreach, and effectively communicating their project through a website and online presentations.

“This team and their work is outstanding,” said William Benman. “Not only did they sweep several awards, but they did it all with a small team and while working with technology they had no prior experience with. They created a device that not only increases accessibility to optogenetics but also allows optogenetic systems to interface directly with computer programs, allowing for completely new research avenues within the field. They are truly a remarkable group.”

Due to the COVID pandemic, the team operated virtually through the summer of 2020, and then continued in person in the summer of 2021 as the project progressed and more students returned to Penn’s campus. Upon return to campus, the work was conducted in both the Bugaj lab in the Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching laboratory in Penn Bioengineering and an interdisciplinary makerspace open to anyone at Penn. The team also collaborated with the Avalos Lab at Princeton University, which conducts research in the application of optogenetics to optimize production of valuable  chemicals in microbes.

“I’m beyond excited about this phenomenal showing from team Penn at the iGEM Jamboree awards ceremony,” said faculty mentor Lukasz Bugaj. “This is truly outstanding recognition for what the team has accomplished, and it wouldn’t have happened without essential contributions from everyone on the team.”

Brian Chow added that this achievement is “no small feat,” especially for a hardware project. “The iGEM competition leans toward genetic strain engineering, but the advances in the field made by these incredible students were undeniable,” he said.

Going forward, the team plans to publish a scientific article and file a patent application describing their device. “It’s clear that there is excitement in the scientific community for what our students created, and we’re excited to share the details and designs of their work,” said Bugaj.

Congratulations to all the team members and mentors of OptoReader on this incredible achievement! Check out the OptoReader project website and Instagram to learn more about their project.

This project was supported by the Department of Bioengineering, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research (OVPR). 

BE Seminar: “Multi-input Chemical Control with Computationally Designed Proteins for Research Tools and Cell Therapies” (Glenna Wink Foight)

Speaker: Glenna Wink Foight, Ph.D.
Senior Scientist
Lyell Immunopharma

Date: Thursday, February 11, 2021
Time: 3:00-4:00 PM EST
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Multi-input Chemical Control with Computationally Designed Proteins for Research Tools and Cell Therapies”

Abstract:

Protein modules that are responsive to small molecule inputs have enabled control of cellular processes for decades’ worth of important mechanistic studies. More recently, they have gained attention as a means of control for improved safety of cellular therapies. To date, most small molecule-responsive systems have been adapted from natural proteins, which provide limited control behaviors and often rely on small molecules with non-ideal properties for use in humans. I will describe how we have used computational protein design to move beyond these naturally occurring systems to create a new set of molecular tools that are responsive to multiple clinically approved drugs. The unique architecture of our system enables more complex control behaviors for multiple cellular outputs. I will describe applications of this designed system in the control of mammalian cytoskeletal signaling, transcription, and CAR T-cell therapy.

Bio:

Dr. Glenna Foight is a Senior Scientist at Outpace Bio, where she leads a team that focuses on engineering small molecule drug-based control of cell therapies. Her work at the startups Outpace Bio and Lyell Immunopharma has involved the adaptation of technologies that she developed as a Washington Research Foundation Innovation Postdoctoral Fellow at the University of Washington. Dr. Foight received her Ph.D. in Biology from MIT and her B.S. in Biochemistry from North Carolina State University. Her background is in applying protein design and engineering to develop novel molecular interventions and control strategies for applications in basic research, cancer, and cell therapy.

BE Seminar: “High-throughput Screening of a Combinatorial CAR Co-stimulatory Domain Library” (Kyle Daniels)

Kyle Daniels, PhD

Speaker: Kyle Daniels, Ph.D.
Postdoctoral Scholar, Cellular Molecular Pharmacology
University of California, San Francisco

Date: Thursday, October 22, 2020
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “High-throughput Screening of a Combinatorial CAR Co-stimulatory Domain Library”

Abstract:

CAR T cells—T cells engineered to express a chimeric antigen receptor that redirects their function to a specific antigen—have proven to be an effective therapy for certain B cell cancers, but many issues remain in order to apply CAR T cells to a broader range of cancers. The activity of CAR T cells can be modulated by varying their co-stimulatory domains. Most CARs use co-stimulatory domains from natural proteins such as 41BB or CD28, each of which contains motifs that recruit unique signaling molecules and elicit a corresponding T cell response. One strategy to achieve increased control over T cell function is to engineer synthetic co-stimulatory domains composed of novel combinations of motifs from natural co-stimulatory proteins. We constructed libraries of CARs containing synthetic co-stimulatory domains and screened these library in primary human T cells for the ability to promote proliferation, degranulation, and memory formation. The results of the screens give insights into how signaling motifs dictate cell function and offer clues on how to engineer co-stimulatory domains that promote desired CAR T cell functions.

Bio:

Kyle completed his BS in Biochemistry at University of Maryland-College Park, and did undergraduate research in the lab of Dorothy Beckett where he studied ligand binding to biotin protein ligases. He did his graduate work at Duke University with Terry Oas working to understand the mechanism of coupled binding and folding in the protein subunit of B. subtilis RNase P. He is currently a postdoctoral fellow in Wendell Lim’s lab at UCSF studying how combinations of linear motifs in receptors dictate cell function. He was an HHMI undergraduate researcher, an NSF graduate research fellow, and a Damon Runyon Cancer Research Foundation postdoctoral fellow. His research interests include synthetic biology, how cells process information and make decisions, and cellular therapy. Outside of lab, he enjoys swimming, videogames, and quality time with friends.

See the full list of upcoming Penn Bioengineering fall seminars here.

Penn Alumnus Peter Huwe Appointed Assistant Professor at Mercer University

Peter Huwe, Ph.D.

Peter Huwe, a University of Pennsylvania alumnus and graduate of the Radhakrishnan lab, was appointed Assistant Professor of Biomedical Sciences at the Mercer University School of Medicine beginning this summer 2020 semester.

Huwe earned dual B.S. degrees in Biology and Chemistry in 2009 from Mississippi College, where he was inducted into the Hall of Fame. At Mississippi College, Huwe had his first exposure to computational research in the laboratory of David Magers, Professor of Chemistry and Biochemistry. He went on to earn his Ph.D. in Biochemistry and Molecular Biophysics in 2014 in the laboratory of Ravi Radhakrishnan, Chair of the Bioengineering Department at Penn. As an NSF Graduate Research Fellow in Radhakrishnan’s lab, Huwe focused his research on using computational molecular modeling and simulations to elucidate the functional consequences of protein mutations associated with human diseases. Dr. Huwe then joined the structural bioinformatics laboratory Roland Dunbrack, Jr., Professor at the Fox Chase Cancer Center as a T32 post-doctoral trainee. During his post-doctoral training, Huwe held adjunct teaching appointments at Thomas Jefferson University and at the University of Pennsylvania. In 2017, Huwe became an Assistant Professor of Biology at Temple University, where he taught medical biochemistry, medical genetics, cancer biology, and several other subjects.

During each of his appointments, Huwe became increasingly more passionate about teaching, and he decided to dedicate his career to medical education. Huwe is very excited to be joining Mercer University School of Medicine as an Assistant Professor of Biomedical Sciences this summer. There, he will serve in a medical educator track, primarily teaching first and second year medical students.

“Without Ravi Radhakrishnan and Philip Rea, Professor of Biology in Penn’s School of Arts & Sciences, giving me my first teaching opportunities as a graduate guest lecturer at Penn, I may never have discovered how much I love teaching,” says Huwe. “And without the support and guidance of each of my P.I.’s [Dr.’s Magers, Radhakrishnan, and Dunbrack], I certainly would not be where I am, doing what I love.  I am incredibly thankful for all of the people who helped me in my journey to find my dream job.”

Congratulations and best of luck from everyone in Penn Bioengineering, Dr. Huwe!

Penn Bioengineering Former Postdoc Whelton Miller Appointed Assistant Professor Loyola University

 

Whelton Miller, Ph.D.

The Department of Bioengineering is proud to congratulate Whelton Miller, Ph.D., a former BE Postdoctoral Fellow, on his appointment as an Assistant Professor in the Department of Medicine in the Health Sciences Division at Loyola University. Miller’s appointment began in January 2020.

Miller received his B.S. in Biochemistry in 2001 from the University of Delaware where he worked under the supervision of Dr. Douglass F. Taber. After graduation, he worked in industry as a synthetic organic chemist for a pharmaceutical company. After three years of industry experience, he returned to academia to complete a Ph.D. in Theoretical/Computational Chemistry from the University of the Sciences in Philadelphia in 2012.

After graduate school, he was given a unique opportunity through Penn’s Postdoctoral Opportunities in Research and Teaching (PennPORT) program, an NIH-sponsored, Institutional Research and Academic Career Development Award (IRACDA) postdoctoral fellowship. In addition to Miller’s responsibilities through the PennPORT program, he served on the Biomedical Postdoctoral Council (BPC), as well as chair of the Engineering PostDoc Association (EpoD). He has worked closely with the Physician Scientist Training Program (PSTP) as a mentor to a high school student, as well as a program guest speaker. This allowed Miller to be a Postdoctoral Research Fellow in the Department of Bioengineering at Penn in the Radhakrishnan Lab – led by BE Department Chair Ravi Radhakrishnan – which focuses on the interface between chemical physics and molecular biology.

Miller has also gained experience in various affiliated appointments, serving as an Assistant Professor in the Department of Chemistry and Physics at Lincoln University (2015-2019), and is currently an Adjunct Assistant Professor in the Department of Chemical and Biomolecular Engineering (CBE) at Penn and an Adjunct Professor in Biomedical Engineering at the University of Ghana in Accra.

Miller joined Loyola University in Chicago, IL in the summer of 2019. Now in his new faculty position, Miller continues to work on collaborative research projects and include colleagues at Instituto Tecnológico de Santo Domingo, the University of Pennsylvania, Lincoln University, University of Ghana, and the University of the Sciences. His current research involves using computational chemistry techniques for theoretical design and study of organometallic and inorganic compounds, protein ligand interactions, and structural electronic effects. His goal is to employ several computational techniques to understand, as well as predict, molecular interactions, such as protein-ligand interactions and protein-protein interactions. Miller says he is always looking forward to more opportunities for minority student development and enrichment in the STEM-related disciplines. Congratulations, Dr. Miller!

 

Penn BE Alumnus Helps Develop Rapid COVID-19 Test

Spencer Glantz (left) examines a scheme for light-activated protein cleavage with Dr. Brian Chow (middle) and 2014 iGEM team member Daniel Cabrera (right).

Spencer Glantz, a graduate of the Penn Bioengineering doctoral program and former member of the Brian Chow Lab, was mentioned in a recent WHYY piece highlighting the efforts of Penn labs to develop rapid, at-home testing for COVID-19. Glantz is currently a co-leader of the molecular biology team for 4Catalyzer, a medical device incubator founded by National Medal of Technology and Innovation recipient, and sponsor of the annual Rothberg Catalyzer Makerthon competition, Jonathan Rothberg. 4Catalyzer is developing the testing technology while Penn researchers are working to evaluate its effectiveness.

Glantz defended his Ph.D. in 2017 and went on to become a postdoc at the Jackson Laboratory (JAX). He was the recipient of the NSF GRFP Fellowship, and during his doctoral work, he discovered a new class of photoreceptors useful for controlling signaling at the cell membrane with light. During his time at Penn, Glantz also mentored the university’s iGEM team, bringing the annual program devoted to undergraduate-led innovation in synthetic biology to the University of Pennsylvania.

Read the full WHYY article here.

Bioengineering Round-Up (January 2020)

by Sophie Burkholder

University of Washington Researchers Engineer a New Way to Study Circulatory Obstruction

Capillaries are one of the most important forms of vasculature in our body, as they allow our blood to transfer nutrients to other parts of our body. But for how much effect capillary functionality can have on our health, their small size makes them extremely difficult to engineer into models for a variety of diseases. Now, researchers at the University of Washington led by Ying Zheng, Ph. D., engineered a three-dimensional microvessel model with living cells to study the mechanisms of microcirculatory obstruction involved with malaria.

Rather than just achieving a physical model of capillaries, these researchers created a model that allowed them to study typical flow and motion through capillaries, before comparing it to deficiencies in this behavior involved with diseases like malaria. The shape of the engineered model is similar to that of an hourglass, allowing the researchers to study instances where red blood cell transit may encounter bottlenecks between the capillaries and other vessels. Using multiphoton technology, Zheng and her team created 100mm capillary models with etched-in channels and a collagen base, to closely model the typical size and rigidity of the vessels. Tested with malaria-infected blood cells, the model showed similar circulatory obstructive behavior to that which occurs in patients, giving hope that this model can be transferred to other diseases involving such obstruction, like sickle cell anemia, diabetes, and cardiovascular conditions.

Understanding a Cell Membrane Protein Could Be the Key to New Cancer Treatments

Almost every cell in the body has integrins, a form of proteins, on its membrane, allowing cells to sense biological information from beyond their membranes while also using this feedback information to initiate signals within cells themselves. Bioengineers at the Imperial College of London recently looked at the way another membrane protein, called syndecan-4, interacts with integrins as a potential form of future cancer treatment. Referred to as “cellular hands” by lead researcher of the study Armando del Rio Hernandez, Ph.D., syndecan-4 sometimes controls the  development of diseases or conditions like cancer and fibrosis. Hernandez and his team specifically studied the ties of syndecan-4 to yes-associated protein (YAP) and enzyme called P13K, both of which are affiliated with qualities of cancer progression like halted apoptosis or cell stiffening. Knowing this, Hernandez and his team hope to continue research into understanding the mechanisms of syndecan-4 throughout the cell, in search of new mechanisms and targets to focus on with future developments of cancer treatments.

A New Medical Device Could Improve Nerve Functionality After Severe Damage

Serious nerve damage remains difficult to repair surgically, often involving the stretching of nerves for localized damage, or the transfer of healthy nerve cells from another part of the body to fill larger gaps in nerve damage. But these imperfect solutions limit the return of full nerve function and movement to the damaged part of the body, and in more serious cases with large areas of nerve damage, can also risk damage in other areas of the body that healthy nerves are borrowed from for treatment. A new study from the University of Pittsburgh published in Science Translational Medicine led by Kacey Marra, Ph. D., has successfully repaired nerve damage in mice and monkeys using a biodegradable tube that releases growth factors called glial-cell-derived neurotrophic factors over time.

Marra and her team showed that this new device restored nerve function up to 80% in nonhuman primates, where current methods of nerve replacement often only achieve 50-60% functionality restoration. The device might have an easier time getting FDA-approval, since it doesn’t involve the use of stem cells in its repair mechanisms. Hoping to start human clinical trials in 2021, Marra and her team hope that the device will help both injured veterans and typical patients with nerve damage, and see potential future applications in facial nerve damage as well.

A New Computational Model Could Improve Treatments for Cancer, HIV, and Autoimmune Diseases

With cancer, HIV, and other autoimmune diseases, the best treatment options for patients are often determined with trial-and-error methods, leading to prolonged instances of ineffective approaches and sometimes unnecessary side effects. A group of researchers led by Wesley Errington, Ph.D., at the University of Minnesota decided to take a computational approach this problem, in an effort to more quickly and efficiently determine the most appropriate treatment for a given patient. Based on parameters controlling interactions between molecules with multiple binding sites, the team’s new model looks primarily at binding strength, linkage rigidity, and size of linkage arrays. Because diseases can often involve issues in molecular binding, the model aimed to model the 78 unique binding configurations for cases of when interacting molecules only have three binding sites, which are often difficult to observe experimentally. This new approach will allow for faster and easier determination of treatments for patients with diseases involving these molecular interactions.

Improved Drug Screening for Glioblastoma Patients

A new microfluidic brain chip from researchers at the University of Houston could help improve treatment evaluations for brain tumors. Glioblastoma patients, who have a five-year survival rate of a little over 5%, are some of the most common patients suffering from malignant brain tumors. This new chip, developed by the lab of Yasemin Akay, Ph.D., can quickly determine cancer drug effectiveness by analyzing a piece of cultured tumor biopsy from a patient by incorporating different chemotherapy treatments through the microfluidic vessels. Overall, Akay and her team found that this new chip holds hope as a future efficient and inexpensive form of drug screening for glioblastoma patients.

People and Places

The brain constructs maps to guide people, not just of physical spaces but also to connect stimuli around them, like conversations and other people. It’s long been known that the brain area responsible for this spatial navigation—the medial temporal lobe—is also involved in recalling memories.

Michael Kahana (left) is principal investigator in the Defense Advanced Research Projects Agency’s RAM program and a professor in the Department of Psychology. Ethan Solomon is an M.D./Ph.D. student in the Department of Bioengineering of the School of Engineering and Applied Science and in the Perelman School of Medicine.

Now, neuroscientists at the University of Pennsylvania have discovered that the signals the brain produces during spatial navigation and episodic memory recall look similar. Low-frequency brain waves called the theta rhythm appear as people jump from one memory to the next, as many prior studies looking only at human navigation have shown. The new findings, which suggest that the brain structures responsible for helping people navigate the world may also “navigate” a mental map of prior experiences, appear in the Proceedings of the National Academy of Sciences.

Read the rest of this story featuring Penn Bioengineering’s Graduate Group member Michael Kahana and M.D./Ph.D. student Ethan Solomon on Penn Today.

The Florida Institute of Technology recently announced plans to start construction in spring 2020 on a new Health Sciences Research Center, set to further establish biomedical engineering and pre-medical coursework and research at the institute. With plans to open the new center in 2022, Florida Tech anticipates increased enrollment in the two programs, and hopes that the center will offer more opportunities in a growing professional field.

Anson Ong, Ph.D., the Associate Dean of Administration and Graduate Programs at the University of Texas at San Antonio, was recently elected to the International College of Fellows of Biomaterials Science and Engineering. With a focus on research in biomaterial implants for orthopaedic applications, Ong’s election to the college honors his advancement and contribution to the field of biomaterials research.

BE Seminar Series: February 13th with Jeffrey J. Tabor, Ph.D.

Our next Penn Bioengineering seminar is coming up soon. We hope to see you there!

Jeffrey J. Tabor, Ph.D.

Speaker: Jeffrey J. Tabor, Ph.D.
Associate Professor of Bioengineering and BioSciences
Rice University

Date: Thursday, February 13, 2020
Time: 12:00-1:00 pm
Location: Room 337, Towne Building

 

Title: “Repurposing bacterial two-component systems as sensors for synthetic biology applications”

Abstract:

Two-component systems (TCSs) are the largest family of signal transduction pathways in biology, and a treasure trove of biosensors for engineering applications. Though present in plants and other eukaryotes, TCSs are ubiquitous in bacteria. Bacteria use TCSs to sense everything from metal ions to carbohydrates and light, and activate responses such as biofilm formation, antibiotic-resistance, and virulence. Despite their importance, the vast majority of TCSs remain uncharacterized. The major challenges are that most bacteria cannot be cultured nor genetically manipulated in the laboratory, and that many TCSs are silenced by poorly-understood gene regulatory networks in laboratory conditions. We have recently developed synthetic biology technologies to address these challenges. In particular, we have developed dual inducible promoter systems that allow us simultaneously express both TCS proteins to optimal levels in the model Gram-negative and Gram-positive bacteria E. coli and B. subtilis. In addition, we have developed a method to modularly interchange the DNA-binding domains of response regulator proteins, enabling unknown or silent TCS output promoters to be replaced with well-characterized alternatives. Finally, we have developed a method to rationally tune the amount of input signal required to activate a TCS over several orders of magnitude by introducing mutations that specifically alter the intrinsic phosphatase activity of the sensor histidine kinase protein. Using these methods, we have repurposed cyanobacterial TCSs to function as optogenetic tools with wavelength specificities from the ultraviolet (380 nm) to the near infrared (770 nm), engineered gut bacteria that diagnose colon inflammation in mice, and discovered a novel pH-sensing TCS in the genome of Yersinia pestis, the causative agent of bubonic plague. Additionally, we have constructed a library of >500 uncharacterized TCSs from the human gut microbiome, which we are screening for novel sensors of gut metabolites and diseases in humans. Finally, we are using our methods to develop new anti-virulence compounds that inhibit TCSs that regulate pathogenesis in major human pathogens. Our work is accelerating fundamental microbiological discoveries and has broad applications in synthetic biology.

Bio:

Since coming to Rice in 2010, Tabor’s work at the interface of synthetic chemistry and molecular/cell biology has led to more than 30 peer-reviewed journal publications and five patent applications. Additional awards he has received include a Collaborative Research Award from the John S. Dunn Foundation (2016), a Michel Systems Biology Innovation Award (2013), a Hamill Innovation Award (2011) by Rice’s Institute of Biosciences and Bioengineering, and a National Academies Keck Futures Initiative (NAKFI) award (2009). Tabor is an affiliated investigator of the NSF Synthetic Biology Engineering Research Center (SynBERC), a member of the editorial board of ACS Synthetic Biology, and has served on an NIH study section and five NSF panels. He also co-organized Synthetic Biology 5.0 – the leading conference in the field.

 

Ravi Radhakrishnan Named Chair of the Department of Bioengineering

The Department of Bioengineering would like to congratulate and welcome our new Chair, Dr. Ravi Radhakrishnan! Read the post below, originally posted on the Penn Engineering blog, and visit the Radhakrishnan Lab’s website for more information on his research.

Ravi Radhakrishnan, Ph.D.

Ravi Radhakrishnan has been named Chair of the Department of Bioengineering.

Radhakrishnan holds joint appointments in the Department of Bioengineering and the Department of Chemical and Biomolecular Engineering. He is a founding member and the current Director of the Penn Institute for Computational Science, as well as a member of the Penn Physical Sciences in Oncology Center, Institute for Translational Medicine and Therapeutics, and several graduate groups, including Materials Science and Engineering, Genomics and Computational Biology, and Biochemistry and Molecular Biophysics.

In addition to these roles at Penn, Radhakrishnan holds many editorial board positions in the research community, including Nature Publishing’s Scientific Reports.

Beyond being a passionate teacher and advocate for his students, Radhakrishnan’s research interests lie at the interface of chemical physics and molecular biology. His lab’s goal is to provide molecular level and mechanistic characterization of biomolecular and cellular systems and formulate quantitatively accurate microscopic models for predicting the interactions of various therapeutic agents with innate biochemical signaling mechanisms.