Claudia Loebel Appointed Assistant Professor at the University of Michigan

by Mahelet Asrat

Claudia Loebel, MD, PhD (Photo/Mel Evans)

The Department of Bioengineering is proud to congratulate Claudia Loebel, M.D., Ph.D. on her appointment as Assistant Professor in the Department of Materials Science and Engineering at the University of Michigan. Loebel is part of the University of Michigan’s Biological Sciences Scholar program, which recruits junior instructional faculty in major areas of biomedical investigation. Loebel’s appointment will begin in Fall 2021.

Loebel got her M.D. in 2011 from Martin-Luther University in Halle-Wittenberg, Germany and her Ph.D. in Health Sciences and Technology from ETH Zurich, Switzerland in 2016. There she worked under her advisors Professors Marcy Zenobi-Wong from ETH Zurich and David Eglin from AO Research Institute Davos. At Penn, she conducted postdoctoral research in the Polymeric Biomaterials Laboratory of Jason Burdick, Robert D. Bent Professor in Bioengineering, and as a Visiting Research Scholar in the Mauck Laboratory of the McKay Orthopaedic Research Laboratory in the Perelman School of Medicine.

Loebel was awarded a K99/R00 Pathway to Independence Award through the National Institutes of Health (NIH), which supports her remaining time as a postdoc as well as her time as an independent investigator at the University of Michigan. Loebel is excited about training the next generation of scientists and engineers and being part of their journey in becoming independent and diverse thinkers.

Loebel’s research area is inspired by the interface between material science and regenerative engineering and how it can address specific problems related to tissue development, repair, and regeneration. By developing mechanically and strucatally dynamic biomaterials, microfabrication, and matrix manipulation techniques her works aim to recreate complex cell-matrix interactions and model tissue morphogenesis and disease. The ultimate goal of her research is to use these engineered systems to develop and translate more effective therapeutic treatments for diseases such as fibrotic, inflammatory, and congenital disorders. Her lab’s work will initially focus on developing engineering lung alveolar organoids, aiming to build models of acute and chronic pulmonary diseases and for personalized medicine.

Loebel says, “I am grateful to all my Ph.D. and postdoc mentors for their continuous support and especially Jason who, over the last few years, has trained me in becoming an independent scientist and mentor. This transition would not have been possible without such a great mentor team behind me.”

Congratulations Dr. Loebel from everyone at Penn Bioengineering!

Alumni Spotlight: Christopher B. Rodell

Christopher B. Rodell completed his Ph.D. in Penn Bioengineering in 2016 and has since gone on to complete a postdoc at the Center for Systems Biology at Massachusetts General Hospital and Harvard Medical School. He is now an Assistant Professor in the School of Biomedical Engineering, Science and Health Systems at Drexel University. Chris caught up with the BE Blog to talk about his love of Philly and the Penn Bioengineering community:

Chris Rodell, Ph.D.

“Yes, Penn is a great place to study – it’s full of brilliant instructors and classmates. No big surprises there. But Penn Bioengineering is so much more than that! It’s a community with passion, grit, and great times that reflect the city as a whole.

I grew up in the South, so I didn’t really know much about the school or Philly in general when I first visited. But what stood out to me was the people. From the professors to the grad students and even the other visiting students, nearly everyone I met was genuinely excited to talk about their work and just wanted to have a good time doing it. Looking back, I realize that’s exactly what I needed to thrive in a research-based education. Whether studying for a class or pulling long hours at lab, it takes some grit to make it through an engineering degree. But being passionate and having others to share your excitement with make it fun. Penn Bioengineering is a really unique place where I always felt welcome to talk with anyone – the sense of community and openness is probably one of the biggest reasons for their great success in education, research, and productive collaboration.

Through my time at Penn, I was fortunate enough to work with Jason Burdick who is, as everyone told me, ‘one of smartest and nicest people you’ll ever meet.’ I also had the opportunity to build a network of lifelong friends and mentors that span the school of engineering, the medical school, and the broader academic community of Philadelphia. These connections have continued to provide me a sense of community as I embark on an independent research career at Drexel, and I’m excited to be back in Philly!”

This post is part of BE’s Alumni Spotlight series. Read more testimonies from BE Alumni on the BE website.

“New Biosealant Can Stabilize Cartilage, Promote Healing After Injury”

New research from Robert Mauck, Mary Black Ralston Professor in Orthopaedic Surgery and Bioengineering and Director of Penn Medicine’s McKay Orthopaedic Research Laboratory, announces a “new biosealant therapy may help to stabilize injuries that cause cartilage to break down, paving the way for a future fix or – even better – begin working right away with new cells to enhance healing.” Their research was published in Advanced Healthcare Materials. The study’s lead author was Jay Patel, a former postdoctoral fellow in the McKay Lab and now Assistant Professor at Emory University and was contributed to by Claudia Loebel, a postdoctoral research in the Burdick lab and who will begin an appointment as Assistant Professor at the University of Michigan in Fall 2021. In addition, the technology detailed in this publication is at the heart of a new company (Forsagen LLC) spun out of Penn with support from the Penn Center for Innovation (PCI) Ventures Program, which will attempt to spearhead the system’s entry into the clinic. It is co-founded by both Mauck and Patel, along with study co-author Jason Burdick, Professor in Bioengineering, and Ana Peredo, a PhD student in Bioengineering.

Read the story in Penn Medicine News.

Penn Engineers’ New Bioprinting Technique Allows for Complex Microtissues

by Evan Lerner

Jason Burdick, Andrew C. Daly and Matthew Davidson

Bioprinting is currently used to generate model tissues for research and has potential applications in regenerative medicine. Existing bioprinting techniques rely on printing cells embedded in hydrogels, which results in low-cell-density constructs that are well below what is required to grow functional tissues. Maneuvering different kinds of cells into position to replicate the complex makeup of an organ, particularly at organlike cell densities, is still beyond their capabilities.

Now, researchers at the School of Engineering and Applied Science have demonstrated a new bioprinting technique that enables the bioprinting of spatially complex, high-cell-density tissues.

Using a self-healing hydrogel that allows dense clusters of cells to be picked and placed in a three-dimensional suspension, the researchers constructed a model of heart tissue that featured a mix of cells that mimic the results of a heart attack.

The study was led by Jason Burdick, Robert D. Bent Professor in the Department of Bioengineering, and Andrew C. Daly, a postdoctoral researcher in his lab. Fellow Burdick lab postdoc Matthew Davidson also contributed to the study, which has been published in the journal Nature Communications.

Even without a bioprinter, groups of cells can be made to clump into larger aggregates, known as spheroids. For Burdick and colleagues, these spheroids represented a potential building block for a better approach to bioprinting.

“Spheroids are often useful for studying biological questions that rely on the cells’ 3D microenvironments or in the construction of new tissues,” says Burdick. “However, we’d like to produce even higher levels of organization by ‘printing’ different kinds of spheroids in specific arrangements and have them fuse together into structurally complex microtissues.”

Read more at Penn Engineering Today.

Danielle Bassett and Jason Burdick are Among World’s Most Highly Cited Researchers

Danielle Bassett and Jason Burdick
Danielle Bassett and Jason Burdick

The nature of scientific progress is often summarized by the Isaac Newton quotation, “If I have seen further it is by standing on the shoulders of giants.” Each new study draws on dozens of earlier ones, forming a chain of knowledge stretching back to Newton and the scientific giants his work referenced.

Scientific publishing and referencing has become more formal since Newton’s time, with databases of citations allowing for sophisticated quantitative analyses of that flow of information between researchers.

The Institute for Scientific Information and the Web of Science Group provide a yearly snapshot of this flow, publishing a list of the researchers who are in the top 1 percent of their respective fields when it comes to the number of times their work has been cited.

Danielle Bassett, J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, and Jason Burdick, Robert D. Bent Professor in the department of Bioengineering, are among the 6,389 researchers named to the 2020 list.

Bassett is a pioneer in the field of network neuroscience, which incorporates elements of mathematics, physics,  biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits. Burdick is an expert in tissue engineering and the design of biomaterials for regenerative medicine; by precisely tailoring the microenvironment within these materials, they can influence stem cell differentiation or trigger the release of therapeutics.

Bassett and Burdick were named to the Web of Science’s 2019 Highly Cited Researchers list as well.

Originally posted in Penn Engineering Today.

Dr. Danielle Bassett and Dr. Jason Burdick Named to Highly Cited Researchers List

by Sophie Burkholder

One way to measure the success or influence of a researcher is to consider how many times they’re cited by other researchers. Every published paper requires a reference section listing relevant earlier papers, and the Web of Science Group keeps track of how many times different authors are cited over the course of a year.

Danielle Bassett, Ph.D.

In 2019, two members of the Penn Bioengineering department, Jason Burdick, Ph.D., and Danielle Bassett, Ph.D., were named Highly Cited Researchers, indicating that each of them placed within the top 1% of citations in their field based on the Web of Science’s index. For the past year, only 6,300 researchers were recognized with this honor, a number that makes up a mere 0.1% of researchers worldwide. Bassett’s lab looks at the use of knowledge, brain, and dynamic networks to understand bioengineering problems at a systems-level analysis, while Burdick’s lab focuses on advancements in tissue engineering through polymer design and development.

Robert D. Bent Chair
Jason Burdick, PhD

Burdick’s and Bassett’s naming to the list of Highly Cited Researchers demonstrates that their research had an outsized influence over current work in the field of bioengineering in the last year, and that new innovations continue to be developed from foundations these two Penn researchers created. To be included among such a small percentage of researchers worldwide indicates that Bassett and Burdick are sources of great impact and influence in bioengineering advancements today.

Jason Burdick Named National Academy of Inventors Fellow

Robert D. Bent Chair
Jason Burdick, PhD

Jason Burdick, Robert D. Bent Professor in the Department of Bioengineering, has been named a Fellow of the National Academy of Inventors (NAI), an award of high professional distinction accorded to academic inventors. Elected Fellows have demonstrated a prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society.

Burdick’s research interests include developing degradable polymeric biomaterials that can be used for tissue engineering, drug delivery, and fundamental polymer studies. His lab focuses on developing polymeric materials for biomedical applications with specific emphasis on tissue regeneration and drug delivery. Burdick believes that advances in synthetic chemistry and materials processing could be the answer to organ and tissue shortages in medicine. The specific targets of his research include: scaffolding for cartilage regeneration, controlling stem cell differentiation through material signals, electrospinning and 3D printing for scaffold fabrication, and injectable hydrogels for therapies after a heart attack.

Read the full story on the Penn Engineering blog.

Penn Bioengineering at BMES 2019

The annual meeting of the Biomedical Engineering Society (BMES) will be held in our hometown of Philadelphia  October 16-19, 2019. The professional society for bioengineers and biomedical engineers will be taking over the city of Brotherly Love, and lots of faculty and students from Penn’s Bioengineering will be attending and presenting their research.

As previously mentioned here, Jason Burdick, Ph.D., the Robert D. Bent Professor of Bioengineering, is one of three chairs of the 2019 annual meeting. He shares this position with two other local faculty: Alisa Morss Clyne, Ph.D., Associate Professor of Mechanical Engineering and Mechanics at Drexel University; and Ruth Ochia, Ph.D., Associate Professor of Instruction in Bioengineering at Temple University. They have worked together since their appointment in 2017 to plan and chair the Philadelphia conference. Check out the video below with details of what to expect from BMES in Philly.

For those of you who have never been to BMES, the event is comprised of a mixture of academic and networking events, including keynote talks from top researchers, thousands of oral and poster presentations, participants from around the world, and social receptions. To plan your itinerary, click here for the program and agenda and here for the schedule at a glance. With the meeting being held locally this year, there are far too many presentations by Penn Bioengineering faculty and staff to list here, so check out BMES’s searchable scientific program or our searchable schedule of Penn faculty student activities at this year’s meeting (separated by day).

In addition to our academic participation, Penn Engineering and Bioengineering are also proud to sponsor this year’s meeting. Registered participants will have several venues to meet and mingle with Penn Engineering faculty, staff, and students and learn about its programs. Staff and volunteers will run a Penn Engineering booth (Booth #824) which will have literature on Penn departments and programs such as the Department of Bioengineering, the Center for Engineering MechanoBiology (CEMB), the Laboratory for Research on the Structure of Matter (LRSM), The Mahoney Institute for Neurosciences (MINS), and the Perelman School of Medicine’s Biomedical Graduate Studies group (BGS) and will be open 9:30am-5:00pm Thursday and Friday, and 9:30am-1:00pm during the conference.

For those interested in social events and networking, check out two back-to-back events on Friday night. From 6:30-8:30 pm, Penn’s Department of Bioengineering, CEMB, and LRSM will host a reception at the Philadelphia Marriott Downtown, Salon E. This will be followed by the meeting’s big BMES Dessert Bash at the Franklin Institute from 8:30-10:30 pm. (Please note: These events are open to registered conference participants only.) For those sticking around, there are no shortage of things to do in Philly, whether you are looking to site-see, shop, or dine.

We hope everyone has a wonderful time at the conference and enjoys Philadelphia! Let us know what activities you are enjoying most by tagging us on Twitter @pennbioeng or Instagram (pennbioengineering) and using the hashtag #pennbioengineering.

BE’s Jason Burdick Receives the 2019 Acta Biomaterialia Silver Medal

by Sophie Burkholder

Dr. Burdick (second from the left) receives his award at the Annual Meeting of the U.S. Society for Biomaterials, April 2019

The Department of Bioengineering would like to congratulate our very own Jason A. Burdick, Ph. D., on being awarded the Acta Biomaterialia Silver Medal. Dr. Burdick is the Robert D. Bent Professor and a member of both the Laboratory for Research on the Structure of Matter (LRSM) and Center for Engineering Mechanobiology (CEMB) here at Penn.

The Acta Biomaterialia Silver Medal is an award from the monthly peer-reviewed scientific journal Acta Biomaterialia that recognizes leaders in academia, industry, and the public sector for mid-career leadership in and significant contribution to the field of biomaterials engineering. Dr. Burdick is the third recipient of the award so far, which includes a silver medal, an inscribed certificate, and reward of $5000. As the principal investigator of the Polymeric Biomaterials Laboratory in Penn’s Department of Bioengineering, Dr. Burdick leads research with a focus in polymer design, musculoskeletal tissue engineering, the control of stem cells with material cues, and the control of molecule delivery with polymers.

The Silver and Gold Medalists (Dr. Burdick and Dr. Antonios G. Mikos respectively) were presented with their own brand of wine in celebration of their achievement.

Specifically, Dr. Burdick’s innovation in the application of hydrogels to the musculoskeletal and cardiovascular systems brought him recognition for this award. His recent publications in Acta Biomaterialia include a study of bioactive factors for cartilage repair and regenesis in collaboration with fellow Penn Professor of Bioengineering Robert Mauck, Ph. D, and a study of adhesive biolinks that mimic the behavior of the extracellular matrix. The Acta Biomaterialia Silver Medal is only the most recent of several awards that Dr. Burdick has received, including both the George H. Heilmeier Faculty Award for Excellence in Research and the Clemson Award for Basic Research, and we can’t wait to see where his continued innovation in biomaterial engineering will take him next.

Penn Bioengineers: Cells Control Their Own Fate by Manipulating Their Environment

by Lauren Salig

In these images, the researchers labeled new proteins white, and antibodies against other proteins in different colors. The co-localization of new proteins and antibodies show how cells can impact their local environments.

As different as muscle, blood, brain and skin cells are from one another, they all share the same DNA. Stem cells’ transformation into these specialized cells — a process called cell fate determination — is controlled through various signals from their surroundings.

A recent Penn Engineering study suggests that cells may have more control over their fate than previously thought.

Jason Burdick, Robert D. Bent Professor of Bioengineering, and Claudia Loebel, a postdoctoral researcher in his lab, led the study. Robert Mauck, Mary Black Ralston Professor for Education and Research in Orthopaedic Surgery at Penn’s Perelman School of Medicine, also contributed to the research.

Their study was published in Nature Materials.

Read the full story in the Penn Engineering Medium Blog. Media contact Evan Lerner.