The first few waves of COVID-19 slowed life across the United States, affecting everything from attending school to eating out for dinner and going on vacation. Segments of health care were also affected: Services that were not considered immediately crucial to fighting the virus were slowed or stopped during the pandemic’s first wave.
But once Penn Medicine invited patients back to resume normal health care—including preventive care, like screenings for disease—there was some lag in numbers.
“As we opened up to routine outpatient care, screening rates for situations when patients didn’t have symptoms were not returning back to normal,” said Mitchell Schnall, MD, PhD, FACR, a professor of Radiology, now the senior vice president for Data and Technology Solutions at Penn Medicine, and then the head of a team focused on the “resurgence” efforts to ease patients back into outpatient care. “Although a short delay in health screening is likely not going to cause long-term health problems, we were concerned whether screening rates would stay lower and lead to a long-term impact.”
Breaking the code of the immune system could provide a new fundamental way of understanding, treating, and preventing every type of disease. Penn Medicine is investing in key discoveries about immunity and immune system function, and building infrastructure, to make that bold idea a reality.
This grandfather lives with primary progressive multiple sclerosis (MS), an autoimmune disorder that he controls with a medicine that depletes his body of the type of immune cells that make antibodies. So while he has completed his COVID-19 vaccine course, his immune system function isn’t very strong—and the invitation has arrived at a time when COVID-19 is still spreading rapidly.
You can imagine the scene as an older gentleman lifts a thick, creamy envelope from his mailbox, seeing his own name written in richly scripted lettering. He beams with pride and gratitude at the sight of his granddaughter’s wedding invitation. Yet his next thought is a sober and serious one. Would he be taking his life in his hands by attending the ceremony?
“In the past, all we could do was [measure] the antibody response,” says Amit Bar-Or, the Melissa and Paul Anderson President’s Distinguished Professor in Neurology at the Perelman School of Medicine, and chief of the Multiple Sclerosis division. “If that person didn’t have a good antibody response, which is likely because of the treatment they’re on, we’d shrug our shoulders and say, ‘Maybe you shouldn’t go because we don’t know if you’re protected.’”
Today, though, Bar-Or can take a deeper dive into his patients’ individual immune systems to give them far more nuanced recommendations. A clinical test for immune cells produced in response to the COVID-19 vaccine or to the SARS-CoV-2 virus itself—not just antibodies—was one of the first applied clinical initiatives of a major new Immune Health® project at Penn Medicine. Doctors were able to order this test and receive actionable answers through the Penn Medicine electronic health record for patients like the grandfather with MS.
“With a simple test and an algorithm we can have a very different discussion,” Bar-Or says. A test result showing low T cells, for instance, would tell Bar-Or his patient may get a meaningful jolt in immunity from a vaccine booster, while low antibody levels would suggest passive antibody therapy is more helpful. Or, the test might show his body is already well primed to protect him, making it reasonably safe to attend the wedding.
This COVID-19 immunity test is only the beginning.
Physicians and scientists at Penn Medicine are imagining a future where patients can get a precise picture of their immune systems’ activity to guide treatment decisions. They are working to bring the idea of Immune Health to life as a new area of medicine. In labs, in complex data models, and in the clinic, they are beginning to make sense out of the depth and breadth of the immune system’s millions of as-yet-undeciphered signals to improve health and treat illnesses of all types.
Penn Medicine registered the trademark for the term “Immune Health” in recognition of the potential impact of this research area and its likelihood to draw non-academic partners as collaborators in its growth. Today, at the south end of Penn’s medical campus, seven stories of research space are being added atop an office building at 3600 Civic Center Blvd., including three floors dedicated to Immune Health, autoimmunity, and immunology research.
The concept behind the whole project, says E. John Wherry, director of Penn Medicine’s Institute for Immunology and Immune Health (I3H), “is to listen to the immune system, to profile the immune system, and use those individual patient immune fingerprints to diagnose and treat diseases as diverse as immune-related diseases, cancer, cardiovascular disease, Alzheimer’s, and many others.”
The challenge is vast. Each person’s immune system is far more complex than antibodies and T cells alone. The immune system is made of multiple interwoven layers of complex defenders—from our skin and mucous membranes to microscopic memory B cells that never forget a childhood infection—meant to fortify our bodies from germs and disease. It is a sophisticated system that learns and adapts over our lifetimes in numerous ways, and it also falters and fails in some ways we understand and others that remain mysterious. And each person’s intricate internal battlefield is in some way unique.
The immune system is not just a set of defensive barricades, either. It’s also a potential source of deep insight about a person’s physiological functioning and responses to medical treatments.
“The immune system is sensing and keeping track of basically all tissues and all cells in our body all the time,” Wherry says. “It is surveying the body trying to clean up any invaders and restore homeostasis by maintaining good health.”
“Our goal is to essentially break the code of the immune system,” says Jonathan Epstein, executive vice dean of the Perelman School of Medicine and chief scientific officer at Penn Medicine. “By doing so, we believe we will be able to determine your state of health and your response to therapies in essentially every human disease.”
In the most recent episode of the Penn Engineering podcast Innovation & Impact, titled “RNA: Past, Present and Future,” David F. Meaney, Senior Associate Dean of Penn Engineering and Solomon R. Pollack Professor in Bioengineering, is joined by Mike Mitchell, Associate Professor in Bioengineering, and Noor Momin, who will be joining Penn Engineering as an Assistant Professor in Bioengineering early next year, to discuss the impact that RNA has had on health care and biomedical engineering technologies.
Mitchell outlines his lab’s research that spans drug delivery, new technology in protecting RNA and its applications in treating cancer. Momin details her research, which is focused on optimizing the immune system to protect against illnesses such as cardiovascular diseases and cancer. With Meaney driving the discussion around larger questions, including the possibility of a cancer vaccine, the three discuss what they are excited about now and where the field is going in the future with these emerging, targeted treatments.
Penn’s Center for Innovation & Precision Dentistry (CiPD) is the first cross-disciplinary initiative in the nation to unite oral-craniofacial health sciences and engineering.
In just two years since CiPD was founded, the outcomes of this newly conceived research partnership have proven its value: microrobots that clean teeth for people with limited mobility, a completely new understanding of bacterial physics in tooth decay, enzymes from plant chloroplasts that degrade plaque, promising futures for lipid nanoparticles in oral cancer treatment and new techniques and materials to restore nerves in facial reconstructive surgery.
In addition, CiPD is training the next generation of dentists, scientists and engineers through an NIH/NIDCR-sponsored postdoctoral training program as well as fellowships from industry.
The center’s Founding Co-Directors, Kathleen J. Stebe, Richer & Elizabeth Goodwin Professor in Chemical and Biomolecular Engineering, and Michel Koo, Professor of Orthodontics in Penn Dental Medicine, published an editorial in the Journal of Dental Research, planting a flag for CiPD’s mission and encouraging others to mirror its method.
The two urge “the academic community to adopt a coordinated approach uniting dental medicine and engineering to support research, training and entrepreneurship to address unmet needs and spur oral health care innovations.”
Penn Bioengineering is proud to congratulate Sunghee Estelle Park, Ph.D. on her appointment as Assistant Professor in the Weldon School of Biomedical Engineering at Purdue University. Park earned her Ph.D. at Penn Bioengineering, graduating in July 2023. She conducted doctoral research in the BIOLines Lab of Dan Huh, Associate Professor in Bioengineering. Her appointment at Purdue will begin January 2024.
During her Ph.D. research, Park forged a unique path that combined principles in developmental biology, stem cell biology, organoids, and organ-on-a-chip technology to develop innovative in vitro models that can faithfully replicate the pathophysiology of various human diseases. Using a microengineered model of the human retina, she discovered previously unknown roles of the MAPK, IL-17, PI3K-AKT, and TGF-β signaling pathways in the pathogenesis of age-related macular degeneration (AMD), presenting novel therapeutic targets that could be further investigated for the development of AMD treatments. More recently, she tackled a significant challenge in the organoid field, the limited tissue growth and maturity in conventional organoid cultures, by designing microengineered systems that enabled organoids to grow with unprecedented levels of maturity and human-relevance. By integrating these platforms with bioinformatics and computational analyses, she identified novel disease-specific biomarkers of inflammatory bowel disease (IBD) and intestinal fibrosis, including previously unknown link between the presence of lncRNA and the development of IBD.
“The unique interdisciplinary expertise I gained from these projects has shaped me into a scholar with a strong collaborative ethos, a quality I hold in high esteem as we work towards advancing our knowledge and management of health and disease,” says Park.
Her vision as an independent researcher is to become a leading faculty who makes impactful contributions to our fundamental understanding of the factors influencing the structural and functional changes of human organs in health and disease. To achieve this, she plans to lead a stem cell bioengineering laboratory with a primary focus on tissue engineering and regenerative medicine. This will involve developing human organoids-on-a-chip systems and establishing next-generation biomedical devices and therapies tailored for regenerative and personalized medicine.
“I am grateful to all my Ph.D. mentors and lab mates at the BIOLines lab and especially my advisor Dr. Dan Huh, for his exceptional guidance, unwavering support, and invaluable mentorship throughout my Ph.D. journey,” says Park. “Dan’s expertise, dedication, and commitment to excellence have been instrumental in shaping both my research and professional development, while also training me to become an independent scientist and mentor.”
Congratulations to Dr. Park from everyone at Penn Bioengineering!
Bioengineering researchers at Children’s Hospital of Philadelphia are developing a less invasive and quicker method to create cartilage implants as an alternative to the current treatment for severe subglottic stenosis, which occurs in 10 percent of premature infants in the U.S.
Subglottic stenosis is a narrowing of the airway, in response to intubation. Severe cases require laryngotracheal reconstruction that involves grafting cartilage from the rib cage with an invasive surgery. With grant support from the National Institutes of Health, Riccardo Gottardi, PhD, who leads the Bioengineering and Biomaterials (Bio2) Lab at CHOP, is refining a technology called Meniscal Decellularized scaffold (MEND). Working with a porcine model meniscus, the researchers remove blood vessels and elastin fibers to create pathways that allow for recellularization. Dr. Gottardi and his team then harvest ear cartilage progenitor cells (CPCs) with a minimally invasive biopsy, combine them with MEND, and create cartilage implants that could be a substitute for the standard laryngotracheal reconstruction.
While laryngotracheal reconstruction in the adult population has a success rate of up to 96%, success rates in children range from 75% to 85%, and children often require revision surgery due to a high incidence of restenosis. The procedure also involves major surgery to remove cartilage from the rib cage, which is more difficult for childrens’ smaller bodies.
“Luckily not many children suffer from severe subglottic stenosis, but for those who do, it is really serious,” said Dr. Gottardi, who also is assistant professor in the Department of Pediatrics and Department of Bioengineering at CHOP and the University of Pennsylvania. “With our procedure, we have an easily accessible source for the cartilage and the cells, providing a straightforward and noninvasive treatment option with much potential.”
Riccardo Gottardi is an Assistant Professor in the Department of Pediatrics, Division of Pulmonary Medicine in the Perelman School of Medicine and in the Department of Bioengineering in the School of Engineering and Applied Science. He also holds an appointment in the Children’s Hospital of Philadelphia (CHOP).
Paul Gehret is a Ph.D. student in Bioengineering, an Ashton Fellow and a NSF Fellow. His research focuses on leveraging decellularized cartilage scaffolds and novel cell sources to reconstruct the pediatric airway.
For decades, LGBTQ+ patients have faced stringent requirements to donate blood—most gay and bisexual men were not allowed to donate at all. Now, however, many more of them will be able to give this selfless gift. The U.S. Food and Drug Administration, which regulates blood donation in this country, has reworked the donor-screening criteria, and in the process opened the door to donation for more Americans.
The previous restriction on accepting blood from men who have sex with men (MSM) dates back to the early days of the AIDS epidemic, when blood donations weren’t able to be screened for HIV, leading to cases of transfusion-transmitted HIV. In 1985, the FDA instituted a lifetime ban on blood donation for MSM, effectively preventing gay and bisexual men from donating. (Also included were women who have sex with MSM.)
Twenty years later, the agency rescinded the ban—but added a restriction that only MSM who had been abstinent from sex for at least one year could donate. In 2020, the FDA shortened the “deferral” period to 90 days of abstinence. While the changes were welcome news for those who had been unable to donate, they still prevented many MSM from giving blood. As he wrote in an op-ed for the Philadelphia Inquirer last year, Kevin B. Johnson,the David L. Cohen University Professor with appointments in the School of Engineering and Applied Science, the Perelman School of Medicine, and Annenberg School for Communication, was one of them. He and his husband were shocked to learn when they went to donate blood during a shortage early in the COVID-19 pandemic, that despite being married and monogamous for close to 17 years, they could not donate unless they were celibate for three months.
“It is time to move quickly to a policy under which all donors are evaluated equally and fairly, and to encourage local blood collection facilities to comply with that policy,” Johnson wrote last year.
Now, such changes are underway. As the pandemic wound down, the FDA moved forward with plans to re-evaluate its donation criteria. The first big change was removal of an indefinite ban on people who lived in or spent significant amounts of time in the United Kingdom, Ireland, and France, a measure that aimed to protect the U.S. blood supply against Creutzfeldt-Jakob disease (CJD; also known as “mad cow disease”), a terminal brain condition caused by hard-to-detect prions that occurred in those countries in the 1980s and 1990s.
Extensive and careful evaluation of epidemiological studies and statistical analysis has shown that the risk of CJD transmission is no longer a concern. The changes to eligibility for LGBTQ+ patients are related to advances in medical and social science, and have also been very thoroughly studied to ensure that the changes will maintain the safety of the blood supply without being discriminatory.
“In the decades since HIV was first recognized, there have been advances in testing methods for detection of the virus, changes in how we process blood products, public health advances, and extensive study of the evolving risk of disease transmission given these advances,” says Sarah Nassau,vice chair of pathology and laboratory medicine at Lancaster General Hospital.
They also draw on rethinking the reliability of the guidelines. For example, while the rules partially or fully prevented gay and bisexual men from donating blood, they did not erect similar barriers to other people engaging in anal sex, or people who have multiple partners.
“Specifying the sexual orientation of the person rather than a behavior in which they engaged was discriminatory and not evidence based,” points out Judd David Flesch, vice chief of inpatient operations in the Department of Medicine at Penn Presbyterian Medical Center and co-director of the Penn Medicine Program for LGBT Health.
Kevin Johnson is the David L. Cohen University of Pennsylvania Professor in the Departments of Biostatistics, Epidemiology and Informatics and Computer and Information Science. As a Penn Integrates Knowlegde (PIK) University Professor, Johnson also holds appointments in the Departments of Bioengineering and Pediatrics, as well as in the Annenberg School of Communication.
Infections caused by fungi, such as Candida albicans, pose a significant global health risk due to their resistance to existing treatments, so much so that the World Health Organization has highlighted this as a priority issue.
Although nanomaterials show promise as antifungal agents, current iterations lack the potency and specificity needed for quick and targeted treatment, leading to prolonged treatment times and potential off-target effects and drug resistance.
“Candida forms tenacious biofilm infections that are particularly hard to treat,” Koo says. “Current antifungal therapies lack the potency and specificity required to quickly and effectively eliminate these pathogens, so this collaboration draws from our clinical knowledge and combines Ed’s team and their robotic expertise to offer a new approach.”
The team of researchers is a part of Penn Dental’s Center for Innovation & Precision Dentistry, an initiative that leverages engineering and computational approaches to uncover new knowledge for disease mitigation and advance oral and craniofacial health care innovation.
For this paper, published in Advanced Materials, the researchers capitalized on recent advancements in catalytic nanoparticles, known as nanozymes, and they built miniature robotic systems that could accurately target and quickly destroy fungal cells. They achieved this by using electromagnetic fields to control the shape and movements of these nanozyme microrobots with great precision.
“The methods we use to control the nanoparticles in this study are magnetic, which allows us to direct them to the exact infection location,” Steager says. “We use iron oxide nanoparticles, which have another important property, namely that they’re catalytic.”
Other authors include Min Jun Oh, Alaa Babeer, Yuan Liu, Zhi Ren, Zhenting Xiang, Yilan Miao, and Chider Chen of Penn Dental; and David P. Cormode and Seokyoung Yoon of the Perelman School of Medicine. Cormode also holds a secondary appointment in Bioengineering.
This research was supported in part by the National Institute for Dental and Craniofacial Research (R01 DE025848, R56 DE029985, R90DE031532 and; the Basic Science Research Program through the National Research Foundation of Korea of the Ministry of Education (NRF-2021R1A6A3A03044553).
“Through their collaborative research, they are aiming to develop next-generation treatments for dental caries (tooth-decay) using lipid nanoparticles, the same delivery vehicles employed in the mRNA COVID-19 vaccine technology.
‘This project shows the type of innovative ideas and collaborations that we are kickstarting through the IDEA prize,’ says Dr. Michel Koo, co-director of the CiPD and Professor at Penn Dental Medicine. ‘This is a great example of synergistic interaction at the interface of engineering and oral health’ adds Dr. Kate Stebe, co-director of the CiPD and Professor at Penn Engineering.”
Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was one of a handful of experts invited to take part in the White House Summit in Biotechnology and Biomanufacturing on September 14, 2022 in Washington, D.C. Reinhart-King and her colleagues gathered to discuss “bio-based solutions to global challenges ranging from food security and climate change to health security and supply chain disruptions.”