A Return to Jamaica Brings Seven Student-Invented Devices to Help People and Wildlife

by Melissa Pappas

Students test the GaitMate harness and structure as a tool to help recovering patients walk.

Penn students have been building their knowledge and hands-on experience in places all over the world through Penn Global Seminars. Last May, “Robotics and Rehabilitation” brought Penn students back to the tropical island of Jamaica to collaborate with local university students and make an impact on recovery and quality of life for patients in Kingston and beyond. 

Course leaders Camillo Jose (CJ) Taylor, Raymond S. Markowitz President’s Distinguished Professor in Computer and Information Science (CIS), and Michelle J. Johnson, Associate Professor of Physical Medicine and Rehabilitation at the Perelman School of Medicine and Associate Professor in Bioengineering (BE) and Mechanical Engineering and Applied Mechanics (MEAM) at Penn Engineering, brought the first cohort of students to the island in 2019

“CJ and I are both Jamaicans by birth,” says Johnson. “We were both excited to introduce the next generation of engineers to robotics, rehabilitation and the process of culturally sensitive design in a location that we are personally connected to.” 

As they built relationships with colleagues at the University of West Indies, Mona (UWI, Mona) and the University of Technology, Jamaica (UTECH), both Johnson and Taylor worked to tie the goals of the course to the location.

“In the initial iteration of the course, our goal was to focus on the applications of robotics to rehabilitation in a developing country where it is necessary to create solutions that are cost effective and will work in under-resourced settings,” says Taylor. 

Taylor and Johnson wanted to make the course a regular offering, however, due to COVID-related travel restrictions, it wasn’t until last spring that they were able to bring it back. But when they did, they made up for lost time and expanded the scope of the course to include solving health problems for both people and the environment.

“While we started with a focus on people, we realized that the health and quality of life of a community is also impacted by the health of the environment,” says Taylor. “Jamaica has rich terrestrial and marine ecosystems, but those resources need to be monitored and regulated. We ventured into developing robotics tools to make environmental monitoring more effective and cost-friendly.”

One of those student-invented tools was a climate survey drone called “BioScout.” 

“Our aim was to create a drone to monitor the ecosystem and wildlife in Jamaica,” says Rohan Mehta, junior in Systems Science and Engineering. “We wanted to help researchers and rangers who need to monitor wildlife and inspect forest sectors without entering and disturbing territories, but there were no available drones that met all of the following criteria necessary for the specific environment: affordable, modular, water-resistant and easy to repair. So we made our own.”

Another team of students created a smart buoy to reduce overfishing. The buoy was equipped with an alarm that goes off when fishermen get too close to a no-fishing zone.

Five other student teams dove into projects aligned to the original goals of the course. Their devices addressed patients’ decreased mobility due to diabetes, strokes and car accidents. These projects were sponsored by the Sir John Golding Rehabilitation Center.

One of which, the GaitMate, was engineered to help stroke patients who had lost partial muscle control regain their ability to walk.  

“We developed a device that supports a patient’s weight and provides sensory feedback to help correct their form and gait as they walk on a treadmill, ultimately enhancing the recovery process and providing some autonomy to the patient,” says Taehwan Kim, senior in BE. “The device is also relatively cheap and simple, making it an option for a wide variety of physical therapy needs in Jamaica and other countries.”

Read the full story in Penn Engineering Today.

2023 Department of Bioengineering Juneteenth Address: “A White Neighbor, a Black Surgeon, and a Mormon Computer Scientist Walk into a Bar…” (Kevin B. Johnson)

Kevin B. Johnson, MD, MS

We hope you will join us for the 2023 Department of Bioengineering Juneteenth Address by Dr. Kevin B. Johnson.

Date: Wednesday, June 14, 2023
Start Time: 11:00 AM ET
Location: Berger Auditorium (Skirkanich Hall basement room 013)

Zoom link
Meeting ID: 925 0325 6013
Passcode: 801060

Following the event, a limited number of box lunches will be available for in-person attendees. If you would like a box lunch, please RSVP here by Monday, June 12 so we can get an accurate headcount.

Speaker: Kevin B. Johnson, MD, MS, FAAP, FAMIA, FACMI
David L. Cohen University Professor
Annenberg School for Communication, Bioengineering, Biostatistics, Epidemiology and Informatics, Computer and Information Science, Pediatrics
VP for Applied Informatics (UPHS), University of Pennsylvania

Title: “A White Neighbor, a Black Surgeon, and a Mormon Computer Scientist Walk into a Bar…”

Abstract: As we recognize Juneteenth, a holiday that brings awareness to what journalist Corey Mitchell calls “…a complex understanding of the nation’s past”, we also need to understand how many of our neighbors, staff, and faculty—even those born in the last 100 years—continue to navigate through the environment that made Juneteenth remarkable. Dr. Johnson will share a bit of his personal story and how this story informs his national service and passion for teaching.

Bio: Dr. Johnson is a leader of medical information technologies to improve patient care and safety. He is well regarded and widely known for pioneering discoveries in clinical informatics, leading to advances in data acquisition, medication management, and information aggregation in medical settings.

He is a board-certified pediatrician who has aligned the powers of medicine, engineering and technology to improve the health of individuals and communities. In work that bridges biomedical informatics, bioengineering and computer science, he has championed the development and implementation of clinical information systems and artificial intelligence to drive medical research. He has encouraged the effective use of technology at the bedside, and he has empowered patients to use new tools that help them to understand how medications and supplements may affect their health. He is interested in using advanced technologies such as smart devices and in developing computer-based documentation systems for the point of care. He also is an emerging champion of the use of digital media to enhance science communication, with a successful feature-length documentary describing health information exchange, a podcast (Informatics in the Round) and most recently, a children’s book series aimed at STEM education featuring scientists underrepresented in healthcare.

Dr. Johnson holds joint appointments in the Department of Computer and Information Science of the School of Engineering and Applied Science, and secondary appointments in Bioengineering and the Annenberg School for Communication. He serves as Vice President for Applied Informatics in the University of Pennsylvania Health System and as a Professor of Pediatrics at the Children’s Hospital of Philadelphia.

Before arriving at Penn, he served as the Cornelius Vanderbilt Professor and Chair of the Department of Biomedical Informatics at the Vanderbilt University School of Medicine, where he had taught since 2002. As Senior Vice President for Health Information Technology at the Vanderbilt University Medical Center, he led the development of clinical systems that enabled doctors to make better treatment and care decisions for individual patients, and introduced new systems to integrate artificial intelligence into patient care workflows.

The author of more than 150 publications, Dr. Johnson has held numerous leadership positions in the American Medical Informatics Association and the American Academy of Pediatrics. He leads the American Board of Pediatrics Informatics Advisory Committee, directs the Board of Scientific Counselors of the National Library of Medicine, and is a member of the NIH Council of Councils. He is an elected member of the National Academy of Medicine, American College of Medical Informatics and Academic Pediatric Society. He has received awards from the Robert Wood Johnson Foundation and American Academy of Pediatrics, among many others.

Using Big Data to Measure Emotional Well-being in the Wake of George Floyd’s Murder

by Melissa Pappas

George Floyd’s murder had an undeniable emotional impact on people around the world, as evidenced by this memorial mural in Berlin, but quantifying that impact is challenging. Researchers from Penn Engineering and Stanford have used a computational approach on U.S. survey data to break down this emotional toll along racial and geographic lines. Their results show a significantly larger amount of self-reported anger and sadness among Black Americans than their White counterparts. (Photo: Leonhard Lenz)

The murder of George Floyd, an unarmed Black man who was killed by a White police officer, affected the mental well-being of many Americans. The effects were multifaceted as it was an act of police brutality and example of systemic racism that occurred during the uncertainty of a global pandemic, creating an even more complex dynamic and emotional response.

Because poor mental health can lead to a myriad of additional ailments, including poor physical health, inability to hold a job and an overall decrease in quality of life, it is important to understand how certain events affect it. This is especially critical when the emotional burden of these events  falls most on demographics affected by systemic racism. However, unlike physical health, mental health is challenging to characterize and measure, and thus, population-level data on mental health has been limited.

To better understand patterns of mental health on a population scale, Penn Engineers Lyle H. Ungar, Professor of Computer and Information Science (CIS), and Sharath Chandra Guntuku, Research Assistant Professor in CIS, take a computational approach to this challenge. Drawing on large-scale surveys as well as language analysis in social media through their work with the World Well-Being Project, they have developed visualizations of these patterns across the U.S.

Their latest study involves tracking changes in emotional and mental health following George Floyd’s murder. Combining polling data from the U.S. Census and Gallup, Guntuku, Ungar and colleagues have shown that Floyd’s murder spiked a wave of unprecedented sadness and anger across the U.S. population, the largest since relevant data began being recorded in 2009.

Read the full story in Penn Engineering Today.

N.B. Lyle Ungar is also a member of the Penn Bioengineering Graduate Group.

The Pioneering Career of Norman Badler

by Ebonee Johnson

The retiring CIS professor chats about his recent ACM SIGGRAPH election and his expansive computer graphics path.

Norman Badler, Ph.D. (Image credit: Penn CIS)

Norman Badler’s election into the 2021 ACM SIGGRAPH Academy Class is right on time. After nearly five decades of teaching and trailblazing in the Penn community, the Rachleff Family Professor in the Department of Computer and Information Sciences retired at the end of the spring semester.

When he arrived at the University in 1974, CIS itself was only about 2 years old, and there was virtually no computer graphics focus or program at all. Badler had no intention to teach it.

“At that time, I was actually a computer vision researcher, but I was also working a little bit in natural language,” says Badler. “So I was literally brought in to fit between the chair, Aravind Joshi, who was a natural language person, and the computer vision person. It wasn’t until about three or four years after I came here that I switched over to computer graphics. Mostly because there was a vacuum and a need and an excitement.”

Several years after completing his dissertation in computer vision and forming a career path to head in that direction, Badler “started getting serious about computer graphics.” An organization that was getting its start around the same time as his Penn career would play a major role: ACM SIGGRAPH (the Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques).

Read the full story in the CIS Blog.

N.B.: Badler was a member of the Penn Bioengineering Graduate Group.

Penn, Carnegie Mellon and Johns Hopkins to Develop New Turing Tests, Investigate How AI Can Become More Like Biological Intelligence

by Evan Lerner

While artificial intelligence is becoming a bigger part of nearly every industry and increasingly present in everyday life, even the most impressive AI is no match for a toddler, chimpanzee, or even a honeybee when it comes to learning, creativity, abstract thinking or connecting cause and effect in ways they haven’t been explicitly programmed to recognize.

This discrepancy gets at one of the field’s fundamental questions: what does it mean to say an artificial system is “intelligent” in the first place?

Konrad Kording, Timothy Verstynen, Joshua T. Vogelstein, and Leyla Isik (clockwise from top left)

Seventy years ago, Alan Turing famously proposed such a benchmark; a machine could be considered to have artificial intelligence if it could successfully fool a person into thinking it was a human as well. Now, many artificial systems could pass a “Turing Test” in certain limited domains, but none come close to imitating the holistic sense of intelligence we recognize in animals and people.

Understanding how AI might someday be more like this kind of biological intelligence — and developing new versions of the Turing Test with those principles in mind — is the goal of a new collaboration between researchers at the University of Pennsylvania, Carnegie Mellon University and Johns Hopkins University.

The project, called “From Biological Intelligence to Human Intelligence to Artificial General Intelligence,” is led by Konrad Kording, a Penn Integrates Knowledge Professor with appointments in the Departments of Bioengineering and Computer and Information Science in Penn Engineering and the Department of Neuroscience at Penn’s Perelman School of Medicine. Kording will collaborate with Timothy Verstynen of Carnegie Mellon University, as well Joshua T. Vogelstein and Leyla Isik, both of Johns Hopkins University, on the project.

Read the full story on Penn Engineering Today.