Investing in Penn’s Data Science Ecosystem

by Erica K. Brockmeier

As part of a major University-wide investment in science, engineering, and medicine, the Innovation in Data Engineering and Science Initiative aims to help Penn become a leader in developing data-driven approaches that can transform scientific discovery, engineering research, and technological innovation.

From smartphones and fitness trackers to social media posts and COVID-19 cases, the past few years have seen an explosion in the amount and types of data that are generated daily. To help make sense of these large, complex datasets, the field of data science has grown, providing methodologies, tools, and perspectives across a wide range of academic disciplines.

But the challenges that lie ahead for data scientists and engineers, from developing algorithms that don’t exacerbate biases to ensuring privacy protections, are equally complex and, in some instances, require entirely new ways of thinking.

As part of its $750 million investment in science, engineering, and medicine, the University has committed to supporting the future needs of this field. To this end, the Innovation in Data Engineering and Science (IDEAS) initiative will help Penn become a leader in developing data-driven approaches that can transform scientific discovery, engineering research, and technological innovation.

“The IDEAS initiative is game-changing for our University,” says President Amy Gutmann. “This new investment allows us to boost our interdisciplinary efforts across campus, recruit phenomenal additional team members, and generate an even more sound foundation for discovery, experimentation, and design. This initiative is a clear statement that Penn is committed to taking data science head-on.”

Building on a foundation of existing expertise

Led by the School of Engineering and Applied Science, the IDEAS initiative builds upon the steadily gathering momentum of its data-centric research. The Warren Center for Network and Data Sciences has been a major catalyst for this type of work, generating foundational research on ethical algorithms and data privacy, as well as collaborations that have drawn in faculty from the Wharton School, Law School, Perelman School of Medicine, and beyond. In addition, Wharton’s Department of Statistics and Data Science is an active partner in research and teaching initiatives that apply statistical modeling across a wide variety of fields.

“One of the unique things about data science and data engineering is that it’s a very horizontal technology, one that is going to be impacting every department on campus,” says George Pappas, Electrical and Systems Engineering Department chair. “When you have a horizontal technology in a competitive area, we have to figure out specific areas where Penn can become a worldwide leader.”

To do this, IDEAS aims to recruit new faculty across three research areas: artificial intelligence (AI) to transform scientific discovery, trustworthy AI for autonomous systems, and understanding connections between the human brain and AI.

Penn already has a strong foundation in using AI for scientific discovery thanks in part to investments in basic research facilities such as the Singh Center for Nanotechnology and the Laboratory for Research on the Structure of Matter. Additionally, there are centers focused on connecting researchers from different fields to address complex scientific questions, including the Center for Soft and Living Matter, Center for Engineering Mechanobiology, and Penn Institute for Computational Science.

Developing “trustworthy” algorithms, ones that work reliably outside of situations in which they are trained, is another key component of the IDEAS initiative. Ongoing research at the Penn Research in Embedded Computing and Integrated Systems Engineering (PRECISE) Center, the General Robotics, Automation, Sensing & Perception (GRASP) Lab, and DARPA-funded projects on the safety of AI-based aircraft control provide a starting point for furthering Penn’s research portfolio on safe, explainable, and trustworthy autonomous systems.

In the area of neuroscience and how the human brain is similar to AI and machine learning approaches, research from PIK Professor Konrad Kording and Dani Bassett’s Complex Systems lab exemplifies the types of cross-disciplinary efforts that are essential for addressing complex questions. By recruiting additional faculty in this area, IDEAS will help Penn make strides in bio-inspired computing and in future life-changing discoveries that could address cognitive disorders and nervous system diseases.

Read the full story in Penn Today.

Penn Bioengineering Celebrates Five Researchers on Highly Cited Researchers 2021 List

The Department of Bioengineering is proud to announce that five of our faculty have been named on the annual Highly Cited Researchers™ 2021 list from Clarivate:

Dani Bassett, Ph.D.

Dani S. Bassett, J. Peter Skirkanich Professor in Bioengineering and in Electrical and Systems Engineering
Bassett runs the Complex Systems lab which tackles problems at the intersection of science, engineering, and medicine using systems-level approaches, exploring fields such as curiosity, dynamic networks in neuroscience, and psychiatric disease. They are a pioneer in the emerging field of network science which combines mathematics, physics, biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits.

Robert D. Bent Chair
Jason Burdick, Ph.D.

Jason A. Burdick, Robert D. Bent Professor in Bioengineering
Burdick runs the Polymeric Biomaterials Laboratory which develops polymer networks for fundamental and applied studies with biomedical applications with a specific emphasis on tissue regeneration and drug delivery. The specific targets of his research include: scaffolding for cartilage regeneration, controlling stem cell differentiation through material signals, electrospinning and 3D printing for scaffold fabrication, and injectable hydrogels for therapies after a heart attack.

César de la Fuente, Ph.D.

César de la Fuente, Presidential Assistant Professor in Bioengineering and Chemical & Biomedical Engineering in Penn Engineering and in Microbiology and Psychiatry in the Perelman School of Medicine
De la Fuente runs the Machine Biology Group which combines the power of machines and biology to prevent, detect, and treat infectious diseases. He pioneered the development of the first antibiotic designed by a computer with efficacy in animals, designed algorithms for antibiotic discovery, and invented rapid low-cost diagnostics for COVID-19 and other infections.

Carl June, M.D.

Carl H. June, Richard W. Vague Professor in Immunotherapy in the Perelman School of Medicine and member of the Bioengineering Graduate Group
June is the Director for the Center for Cellular Immunotherapies and the Parker Institute for Cancer Therapy and runs the June Lab which develops new forms of T cell based therapies. June’s pioneering research in gene therapy led to the FDA approval for CAR T therapy for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Vivek Shenoy, Ph.D.

Vivek Shenoy, Eduardo D. Glandt President’s Distinguished Professor in Bioengineering, Mechanical Engineering and Applied Mechanics (MEAM), and in Materials Science and Engineering (MSE)
Shenoy runs the Theoretical Mechanobiology and Materials Lab which develops theoretical concepts and numerical principles for understanding engineering and biological systems. His analytical methods and multiscale modeling techniques gain insight into a myriad of problems in materials science and biomechanics.

The highly anticipated annual list identifies researchers who demonstrated significant influence in their chosen field or fields through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science™ citation index.

Bassett and Burdick were both on the Highly Cited Researchers list in 2019 and 2020.

The methodology that determines the “who’s who” of influential researchers draws on the data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information™ at Clarivate. It also uses the tallies to identify the countries and research institutions where these scientific elite are based.

David Pendlebury, Senior Citation Analyst at the Institute for Scientific Information at Clarivate, said: “In the race for knowledge, it is human capital that is fundamental and this list identifies and celebrates exceptional individual researchers who are having a great impact on the research community as measured by the rate at which their work is being cited by others.”

The full 2021 Highly Cited Researchers list and executive summary can be found online here.

BE Seminar: “Neural Engineering and the Primate Brain: Working at the Electrical and Optical Interface” (Bijan Pesaran)

Our final Penn Bioengineering seminar of the fall semester will take place this Thursday. Keep an eye on the BE events calendar for upcoming spring seminars.

Speaker: Bijan Pesaran, Ph.D.
Professor
Neural Science
New York University

Date: Thursday, December 16, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
Room: Moore 216

Abstract: Neural engineering is enjoying an era of transformative growth. Classical methods that dominated the neurosciences for decades are being replaced by powerful new technologies. In this talk, I will discuss how to engineer electrical and optical interfaces to the primate brain. I will first present work on electrode interfaces that stimulate and record at the surface of and within the brain. I will show how simultaneously measuring and manipulating neurons immediately beneath electrode contacts during behavior delivers ground-truth data. The results have implications for electrode interface design and new generations of implantable biomedical devices. I will then turn to optical neural interfaces. Two-photon fluorescence microscopy images the activity of neurons expressing genetically-encoded calcium indicators and is most often performed in small animal models, such as the mouse, worm and fly. I will present a cellular-resolution robotic imaging platform to investigate the non-human primate brain at scale. I will finish by discussing potential applications of this technology to a range of scientific and clinical goals.

Bijan Pesaran Bio: Bijan Pesaran is interested in understanding large-scale circuits in the primate brain and how to engineer novel brain-based therapies. Bijan completed his undergraduate degree in Physics at the University of Cambridge, UK. After a year in the Theoretical Physics department at Bell Labs Murray Hill, he went on to earn his PhD in Physics at the California Institute of Technology. He then made the switch to neuroscience as a postdoctoral fellow in Biology at Caltech. Bijan has been on the faculty at New York University since 2006. He is currently a Professor of Neural Science in the Center for Neural Science. In 2013, he was a CV Starr Visiting Scholar at the Princeton Neuroscience Institute at Princeton University. Among other honors and awards, Bijan has received a Burroughs-Wellcome Career Award in the Biomedical Sciences, a Sloan Research Fellowship, a McKnight Scholar Award, the National Science Foundation CAREER Award and is a member of the Simons Collaboration for the Global Brain.

César de La Fuente Uses AI to Discover Germ-fighting Peptides

César de la Fuente, PhD

The impending danger of bacterial resistance to antibiotics is well-documented within the scientific community. Bacteria are the most efficient evolvers, and their ability to develop tolerance to drugs, in addition to antibiotic overuse and misuse, means that researchers have had to get particularly resourceful to ensure the future of modern medicine.  

Presidential Assistant Professor in Bioengineering, Microbiology, Psychiatry, and Chemical and Biomolecular Engineering César de la Fuente and his team are using an algorithm to search the human genome for microbe-fighting peptides. So far, the team has synthesized roughly 55 peptides that, when tested against popular drug-resistant microbes such as the germ responsible for staph infections, have proven to prevent bacteria from replicating.  

WIRED’s Max G. Levy recently spoke with de la Fuente and postdoctoral researcher and study collaborator Marcelo Torres about the urgency of the team’s work, and why developing these solutions is critical to the survival of civilization as we know it. The team’s algorithm, based on pattern recognition software used to analyze images, makes an otherwise insurmountable feat tangible.  

De la Fuente’s lab specializes in using AI to discover and design new drugs. Rather than making some all-new peptide molecules that fit the bill, they hypothesized that an algorithm could use machine learning to winnow down the huge repository of natural peptide sequences in the human proteome into a select few candidates.

“We know those patterns—the multiple patterns—that we’re looking for,” says de la Fuente. “So that allows us to use the algorithm as a search function.”

Read Max G. Levy’s An AI Finds Superbug-Killing Potential in Human Proteins” at WIRED. 

This story previously appeared in Penn Engineering Today.

Konrad Kording Receives Named University Professorship

Konrad Kording (Photo by Eric Sucar)

President Amy Gutmann has recently announced that two Penn Integrates Knowledge Professors, one of which is Penn Engineering’s own Konrad Kording, have received named University Professorships.  

Kording, who holds joint appointments in the Department of Neuroscience in the Perelman School of Medicine and the Department of Bioengineering in the School of Engineering and Applied Science, will become the Nathan Francis Mossell University Professor. 

When Nathan Francis Mossell graduated in 1882, he became the first African American to earn a medical degree from Penn. He soon became a prominent African American physician, the first to be elected to the Philadelphia County Medical Society. He helped found the Frederick Douglass Memorial Hospital and Training School, which treated Black patients and helped train the next generation of Black doctors and nurses.  

“Dr. Mossell was truly inspiring. He had to fight for everything, yet never reneged on his principles. He pretty much started a hospital and was a major champion for the advancement of equality for African Americans,” Kording said. “In my research, where I study how intelligence works, I am inspired by scholars like him who combine many different insights. He was a wonderful man, and I will be proud to carry his name.” 

Read more in Penn Today.

“You get what you put in”: A First-generation Penn Bioengineering Graduate Student Discusses His Journey

Joseph Lance Casila

Joseph Lance Casila, a doctoral student and Fontaine Fellow in Bioengineering, was profiled by his alma mater, the University of Guam (UOG. Casila was the first person in his family to graduate from a U.S.-accredited university and is now studying tissue engineering and regenerative medicine in the Bioengineering and Biomaterials Laboratory of Riccardo Gottardi, Assistant Professor in Bioengineering in Penn Engineering and Pediatrics in Penn Medicine and the Children’s Hospital of Philadelphia (CHOP). His research in the Gottardi lab employs “tissue engineering and drug delivery for biomedical problems relating to knees, ears, nose, and throat but specifically to pediatric airway disorders.” The article discusses Casila’s journey from valedictorian of his high school, to a first-generation undergraduate interested bioengineering, and now a graduate student studying at Penn on a full scholarship. After completing his degree, Casila hopes to bring what he’s learned back home to advance health care in Guam.

“My mentors, and especially my friends, helped me make the most of what UOG had to offer, and it paid off rewardingly,” he said. “You get what you put in.”

Read “A first-generation student’s path to an Ivy League Ph.D. program” in the University of Guam News & Announcements.

BE Seminar: “Tissue-Inspired Synthetic Biomaterials” (Shelly Peyton)

Shelly R. Peyton, Ph.D.

Speaker: Shelly R. Peyton, Ph.D.
Professor, Armstrong Professional Development Professor
Chemical Engineering, Biomedical Engineering Adjunct
College of Engineering
University of Massachusetts Amherst

Date: Thursday, December 9, 2021
Time: 3:30-4:30 PM EST
Zoom – check email for link
This seminar will be held virtually, but students registered for BE 699 can gather to watch in Moore 216.

Abstract: Improved experimental model systems are critically needed to better understand cancer progression and bridge the gap between lab bench proof-of-concept studies, validation in animal models, and eventual clinical application. Many methods exist to create biomaterials, including hydrogels, which we use to study cells in contexts more akin to what they experience in the human body. Our lab has multiple approaches to create such biomaterials, based on combinations of poly(ethylene glycol) (PEG) with peptides and zwitterions. In this presentation, I will discuss our synthetic approaches to building life-like materials, how we use these systems to grow cells and understand how a cell’s environment, particularly the extracellular matrix regulates cancer cell growth, dormancy, and drug sensitivity.

Shelly Peyton Bio: Shelly Peyton is the Armstrong Professor and Graduate Program Director, and chair of the Diversity, Equity, and Inclusion (DEI) committee of Chemical Engineering at the University of Massachusetts Amherst. She is co-director of the Models 2 Medicine Center in the Institute for Applied Life Sciences. She received her B.S. in Chemical Engineering from Northwestern University in 2002 and went on to obtain her MS and PhD in Chemical Engineering from the University of California, Irvine. She was then an NIH Kirschstein post-doctoral fellow in the Biological Engineering department at MIT before starting her academic appointment at UMass in 2011. Shelly leads an interdisciplinary group of engineers and molecular cell biologists seeking to create and apply novel biomaterials platforms toward new solutions to grand challenges in human health. Her lab’s unique approach is using our engineering expertise to build simplified models of human tissue with synthetic biomaterials. They use these systems to understand 1) the physical relationship between metastatic breast cancer cells and the tissues to which they spread, 2) the role of matrix remodeling in drug resistance, and 3) how to create bioinspired mechanically dynamic and activatable biomaterials. Among other honors for her work, Shelly was a 2013 Pew Biomedical Scholar, received a New Innovator Award from the NIH, and she was awarded a CAREER grant from the NSF. Shelly is co-PI with Jeanne Hardy on the Biotechnology (BTP) NIH T32 program and is a co-PI of the PREP program at UMass, which brings students from URM groups to UMass for a 1-year post-BS study to help prepare them for graduate school.

Strella Biotechnology Continues Scaling Up

Katherine Sizov (right) and Malika Shukurova (left) earned the 2019 President’s Innovation Prize for their startup, Strella Biotechnology.

“Fruit hacking” startup Strella Biotechnology, founded by students and faculty advisors from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS), tackles food waste by monitoring fruit ripeness. No stranger to media coverage, Strella and co-founder Katherine Sizov have previously been spotlighted for receiving the 2019 President’s Innovation Prize, which included $100,000 of financial support, a $50,000 living stipend for both awardees, and a year of dedicated co-working and lab space at the Pennovation Center. 

Recently, Michael Birnbaum of the Washington Post spoke with Sizov about the hard work and flexibility it took to propel the company’s successful scaling endeavors: Strella is now monitoring 15 percent of all U.S. apples.  

“Sizov, 24, wants to eliminate food waste one fruit at a time. In central Washington, it was an effort that required almost as much quick footwork as the épée squad she captained as a championship fencer in college. One moment, she was trying to beam the sensor’s WiFi signal through the reception black hole of millions of apples, which cause transmission issues because of their high water content. The next, she was sitting down with laconic apple growers with orchards planted generations ago, trying to convince them she could help them avoid wasted fruit. By day’s end, she might be folding her 6-foot frame into the passenger seat of a rental car, balancing her laptop on her knees and trying to win over Silicon Valley investors on Zoom calls using skills she had picked up partly by watching YouTube tutorials.”

Read Michael Birnbaum’s Fighting food waste, one apple at a time” for more about Sizov’s motivation, background and process.

Strella Biotechnology was founded by Penn alumna Katherine Sizov (Bio 2019) and was initially developed in the George H. Stephenson Foundation Educational Laboratory, the biomakerspace and primary teaching lab of the Department of Bioengineering. Sizov and Penn Bioengineering alumna Malika Shukurova (BSE 2019) won a President’s Innovation Prize in 2019. Read more BE blog stories featuring Strella Biotechnology.

Penn Bioengineering Senior Raveen Kariyawasam Named 2022 Rhodes Scholar

2022 Rhodes Scholar, Raveen Kariyawasam

One of the two University of Pennsylvania seniors who were awarded Rhodes Scholarships for graduate study at the University of Oxford is Penn Engineering‘s own Raveen Kariyawasam, from Colombo, Sri Lanka.

Kariyawasam is a double major in Engineering’s Department of Bioengineering, with concentrations in computational medicine and medical devices, and in the Wharton School, with concentrations in finance and entrepreneurship and innovation.

“We are so proud of our newest Penn Rhodes Scholars who have been chosen for this tremendous honor and opportunity,” said President Amy Gutmann. “The work Raveen has done in health care innovation and accessibility and Nicholas has done to support student well-being while at Penn is impressive, and pursuing a graduate degree at Oxford will build upon that foundation. We look forward to seeing how they make an impact in the future.”

The Rhodes is highly competitive and one of the most prestigious scholarships in the world. The scholarships provide all expenses for as long as four years of study at Oxford University in England.

According to the Rhodes Trust, about 100 Rhodes Scholars will be selected worldwide this year, chosen from more than 60 countries. Several have attended American colleges and universities but are not U.S. citizens and have applied through their home country, including Kariyawasam in Sri Lanka.

With an interest in health care innovation and accessibility, Kariyawasam is involved in several research projects, including his Wharton honors thesis that focuses on optimizing a low-cost electronic medical record system in Sri Lanka and the Philippines. He has received several research grants, including the Vagelos Undergraduate Research Grant, the Berkman Opportunity Fund grant, and the National Science Foundation’s Innovation Corps grant. At Penn, he is editor-in-chief of Synapse, a student-run health care magazine and is vice president of the Phi Sigma Biological Honor Society. He is a disc jockey for the student-run radio station, WQHS, and an executive board member of the Wharton Undergraduate Healthcare Club. He also is a former student ambassador at the Penn Health-Tech Center for Health Devices and Technology. At Oxford, Kariyawasam plans to pursue a D.Phil. degree.

Read more at Penn Today.

Penn’s 2021 iGEM Team Takes Home Multiple Prizes

Four of Penn’s 2021 iGEM team (left to right): Juliette Hooper, Grace Qian, Saachi Datta, and Gloria Lee.

The University of Pennsylvania’s 2021 iGEM team has been awarded several distinctions in this year’s highly competitive iGEM Competition. The International Genetically Engineered Machine Competition is the largest synthetic biology community and the premiere synthetic biology competition for both university and high school level students from around the world. Each year, hundreds of interdisciplinary teams of students combine molecular biology techniques and engineering concepts to create novel biological systems and compete for prizes and awards through oral presentations and poster sessions.

The Penn team’s project, “OptoReader,” is a combined light-simulation device and plate reader, which makes optogenetic experiments more powerful and accessible. The abstract reads:

“Metabolic engineering has the potential to change the world, and optogenetic tools can make metabolic engineering research easier by providing spatiotemporal control over cells. However, current optogenetic experiments are low-throughput, expensive, and laborious, which makes them inaccessible to many. To tackle this problem, we combined a light-stimulation device with a plate reader, creating our OptoReader. This device allows us to automate ~100 complex optogenetic experiments at the same time. Because it is open source and inexpensive, our device would make optogenetic experiments more efficient and available to all.”

Watch the team’s presentation on OptoReader here.

This year’s Penn team was mentored by Lukasz Bugaj, Assistant Professor in Bioengineering. In addition, the team was supported by Brian Chow, Associate Professor in Bioengineering. Chow has supported previous undergraduate iGEM teams at Penn, and was involved in the creation of the iGEM program during his time as a graduate student at MIT.

OptoReader took home the top prizes in three of the four categories in which it was nominated. These prizes include:

  • Best Foundational Advance (best in track)
  • Best Hardware (best from all undergraduate teams)
  • Best Presentation (best from all undergraduate teams)

They were also awarded a Gold Medal Distinction and were included in the Top 10 Overall (from all undergraduate teams, and the only team from the United States to make the top 10) and Top 10 Websites (from all undergraduate teams).

The awards were announced during iGEM’s online Jamboree Award Ceremony on November 14, 2021 (watch the full award ceremony here).

In addition to the outstanding awards recognition, OptoReader was also selected for an iGEM Impact Grant which awards teams $2,500 to continue development of their projects. This new initiative from the iGEM Foundation was announced earlier this year, and with the support of the Frederick Gardner Cottrell Foundation, is distributing a total of $225,000 in grant funds to 90 iGEM teams during the 2021 competition season. Learn more about the Impact Grant and read the full list of winning teams here.

Penn’s 2021 iGEM team was made up of an interdisciplinary group of women undergraduates from the School of Engineering and Applied Science (SEAS) and the School of Arts and Sciences (SAS):

  • Saachi Datta (B.A. in Biology and Religious Studies 2021)
  • Juliette Hooper (B.S.E. and M.S.E. in Bioengineering 2022)
  • Gabrielle Leavitt (B.S.E. in Bioengineering 2021 and current Master’s student in Bioengineering)
  • Gloria Lee (B.A. in Physics and B.S.E. in Bioengineering 2023)
  • Grace Qian (B.S.E. in Bioengineering 2023)
  • Lana Salloum (B.A. in Neuroscience 2022)

They were mentored by three doctoral students in Bioengineering: Will Benman (Bugaj Lab), David Gonzalez Martinez (Bugaj Lab), Gabrielle Ho (Chow Lab). Saurabh Malani, a graduate student in the Avalos Lab at Prince University, was also very involved in mentoring the team.

OptoReader

The graduate mentors were instrumental in quickly bringing the undergraduates up to speed on a diverse array of skills needed to accomplish this project including circuit design, optics, optogenetics, programming, and additive manufacturing. They then coached the team through building and testing prototypes, as well as accomplishing other objectives required for success at iGEM. These other objectives included establishing collaborations with other iGEM teams, performing outreach, and effectively communicating their project through a website and online presentations.

“This team and their work is outstanding,” said William Benman. “Not only did they sweep several awards, but they did it all with a small team and while working with technology they had no prior experience with. They created a device that not only increases accessibility to optogenetics but also allows optogenetic systems to interface directly with computer programs, allowing for completely new research avenues within the field. They are truly a remarkable group.”

Due to the COVID pandemic, the team operated virtually through the summer of 2020, and then continued in person in the summer of 2021 as the project progressed and more students returned to Penn’s campus. Upon return to campus, the work was conducted in both the Bugaj lab in the Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching laboratory in Penn Bioengineering and an interdisciplinary makerspace open to anyone at Penn. The team also collaborated with the Avalos Lab at Princeton University, which conducts research in the application of optogenetics to optimize production of valuable  chemicals in microbes.

“I’m beyond excited about this phenomenal showing from team Penn at the iGEM Jamboree awards ceremony,” said faculty mentor Lukasz Bugaj. “This is truly outstanding recognition for what the team has accomplished, and it wouldn’t have happened without essential contributions from everyone on the team.”

Brian Chow added that this achievement is “no small feat,” especially for a hardware project. “The iGEM competition leans toward genetic strain engineering, but the advances in the field made by these incredible students were undeniable,” he said.

Going forward, the team plans to publish a scientific article and file a patent application describing their device. “It’s clear that there is excitement in the scientific community for what our students created, and we’re excited to share the details and designs of their work,” said Bugaj.

Congratulations to all the team members and mentors of OptoReader on this incredible achievement! Check out the OptoReader project website and Instagram to learn more about their project.

This project was supported by the Department of Bioengineering, the School of Engineering and Applied Science, and the Office of the Vice Provost for Research (OVPR).