Engheta, who also has appointments in the departments of Bioengineering and Materials Science and Engineering, is honored for pioneering contributions to optical metamaterials and nanoscale optics.
“The Born Award recognizes Nader Engheta’s exceptional contributions to the fields of metamaterials, transformation optics and nanophotonics,” said 2020 OSA President Stephen D. Fantone, founder and president of Optikos Corporation. “This honor is emblematic of the pioneering work he has done in near-zero index metamaterials.”
This past spring, we congratulated the founders of InstaHub, one of the winners of the President’s Innovation Prize. The initial development work for InstaHub was also done in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace here in Penn Bioengineering. Check out the article and video below to learn more about InstaHub’s efforts to fight climate change.
By Lauren Hertzler
As he processed down Locust Walk the day of Commencement, Michael Wong didn’t miss a beat. He took in with pride all his interactions with friends, every cheer from the crowd, and each step on his final day as an undergraduate at Penn.
The first in his family to go to college, Wong would not only graduate that day with a degree from the Wharton School. Thanks to a President’s Innovation Prize (PIP), he’d also graduate with a full-fledged startup and significant funding in hand, ready and willing to take on his next chapter.
“The whole day of graduation I was like ‘Wow, this is amazing,’” recalls Wong. “It’s one of my favorite moments.”
Wong, from Oakland, California, founded InstaHub in 2016. Working with Dayo Adewole, a doctoral candidate in the School of Engineering and Applied Science, the pair designed a snap-on motion sensor device that attaches onto existing light switches. It is battery powered, with occupancy sensing capabilities, and is easy to install. With PIP, which awarded Wong $100,000 (plus $50,000 for living expenses), he says he’s been able to do rapid prototyping to move InstaHub forward.
On the second floor of the Pennovation Center, Strella Biotechnology is hard at work turning their student-led startup into a full-fledged company that’s ready to make a major impact in the agricultural sector.
May graduates Katherine Sizov and Malika Shukurova, respectively the CEO and head of R&D at Strella, share a 2019 President’s Innovation Prize, which includes $100,000 of financial support, a $50,000 living stipend for both awardees, and a year of dedicated co-working and lab space at the Pennovation Center. The alumnae and their company are now poised to take on the challenge of $1 trillion worth of food waste.
Strella’s biosensors are designed to give packers real-time data on how ripe their fruits are while being stored between harvesting and selling. Using bio-inspired sensors that measure the ethylene gas produced by fruits as they ripen, Strella successfully “hacked the fruit” to create their patent-pending biosensors. Now, only six months after graduation, Strella has six paying customers and is aiming for $100,000 in sales by the end of the season.
Beyond the work needed to deploy their first paid product, Strella also has a clear view of what needs to be done for future progress of the company. This means running experiments in the lab to refine their current sensors while conducting other experiments that will help the company be able to monitor other types of fresh foods. It’s a job that Shukurova says involves a lot of multitasking and requires an “all-hands” approach to problem solving.
“We set up experiments that run for several days, and during that period we work on different tasks. I prepare for the next set of experiments, Jacob [Jordan] and Katherine travel to our customers to deploy sensors, and Zuyang [Liu]]works on IoT [Internet of Things]. At the end of the day we all come together to discuss results and future plans,” says Shukurova about their company’s work flow.
Last spring, we congratulated Penn Bioengineering graduating senior Oladunni Alomaja (BSE ’19) and her partners at Rebound Liberia on their President’s Engagement Prize. Check out the article and video below on their exciting project.
By Brandon Baker
Fueled by the encouragement and support they received this spring and summer, the three Penn alumni behind Rebound Liberia are now laser-focused on carrying their mission of promoting education and empowerment straight to the basket.
The Rebound Liberia team is led by Princess Aghayere, Oladunni Alomaja, and Summer Kollie, all May Penn graduates who received the President’s Engagement Prize — a $100,000 project prize and $50,000 living stipend per team member, awarded for post-graduation projects that make a positive, lasting difference in the world. The trio, each of whom has connections to West Africa and strives to give back, proposed an NGO that would bridge the literacy gap in post-conflict Liberia between male and female youth through workshops and a basketball program for women.
On Sept. 4, after months of preparation, the team relocated to Monrovia, Liberia, and is settling in.
“I think there’s some cultural shock,” says Aghayere, musing about the adjustment. “But Penn is a great place to travel and a lot of us took advantage of opportunities to travel. I’m not surprised, because this is not my first time on the continent, but there are things unique about Liberia. Getting used to the accents, the weather, the currency — but it’s fun.”
Aghayere and Alomaja were born in Nigeria, while Kollie is from Liberia.
Their days so far, they explain, have been consistently jam-packed with meetings. At present, they’re planning an inter-school basketball tournament to introduce their program to Liberia; in recent weeks, they’ve made connections with school administrators, found their footing in the community, and worked through the logistics of organizing a tournament — which, they note, they had some practice with in 2018, creating a summer basketball clinic in Monrovia, Liberia, for girls that was hosted twice a week.
The upcoming tournament, which will include 120 female players on Nov. 22–24, represents a first step toward their larger intention to build a basketball court and program, and marry that with literacy resources. They aim to serve approximately 60 girls in their program.
“We didn’t think it would be wise to move in September and not have an event until the next June or so, so we thought [of] the tournament,” says Aghayere, explaining the origins of the tournament. “At first, we were thinking we’d have a team and foster the game amongst girls here in Monrovia, and we wanted to include a lot more girls and create this sort of league of our own while introducing ourselves as this new social enterprise in Liberia. We thought a tournament would be a launch of Rebound Liberia and introduce us to the community here.”
We would like to congratulate Penn Bioengineering Senior Design team MeVR on winning a Berkman Prize. MeVR consists of current BE seniors Nicole Chiou, Gabriel DeSantis, Ben Habermeyer, and Vera Lee. Awarded by the Penn Engineering Entrepreneurship Program, the Berkman Opportunity Fund provides grants to support students with innovative ideas that might turn into products and companies.
MeVR is a bioresponsive virtual reality platform for administering biofeedback therapy. Biofeedback is the process of gaining greater awareness of involuntary physiological functions using sensors that provide information on the activity of those bodily systems, with the goal of gaining voluntary control over functions such as heart rate, muscle tension, and pain perception. This therapy is used to treat a variety of conditions such as chronic pain, stress, anxiety, and PTSD. These treatments cost on the order of hundreds to thousands of dollars, require the presence of a therapist to set up and deliver the therapy session, and are generally not interactive or immersive. MeVR is a platform to reduce these limitations of biofeedback therapy through an individualized, immersive, and portable device which guides users through biofeedback therapy using wearable sensors and a virtual reality environment which responds in real-time to biological feedback from the user’s body.
NB: Penn Bioengineering would like to congratulate one of its current Senior Design teams (Alec Bayliff, Bram Bruno, Justin Swirbul, and Vishal Then) which took home the $500 Pioneer Award at this year’s Rothberg Catalyzer competition this past weekend! Keep reading for more information on the competition, awards, and winners.
Penn Health-Tech’s Rothberg Catalyzer is a two-day makerthon that challenges interdisciplinary student teams to prototype and pitch medical devices that aim to address an unmet clinical need.
The Catalyzer’s third competition was held last weekend and was won by MAR Designs, a team of Mechanical Engineering and Applied Mechanics graduate students: Rebecca Li, Ariella Mansfield and Michael Sobrepera.
MAR Designs took home the top prize of $10,000 for their project, an orthotic device that children with cerebral palsy can more comfortably wear as they sleep.
According to the team’s presentation, existing wrist orthoses “improve function and treat/prevent spasticity. However, patients report that these devices are uncomfortable which leads to lack of compliance and may also prevent patient’s eligibility for surgeries.” MAR Designs’ device initially allows full range of motion, but gradually straightens the wrist as the child is falling asleep.
In second place was Splash Throne. Team members Greg Chen, Nik Evitt, Jake Crawford and Meghan Lockwood proposed a toilet safety frame intended for elderly users. Embedded sensors track basic health information, like weight and heart-rate, as part of a preventative health routine.
Integrated Product Design students Jonah Arheim, Laura Ceccacci, Julia Lin and Alex Wan took third place with ONESCOPE, an untethered, hands-free laproscope designed to make minimally-invasive surgeries faster and safer.
Finally, SchistoSpot took home the Catalyzer’s Pioneer Award. Bioengineering and Computer and Information Science seniors Alec Bayliff, Bram Bruno, Justin Swirbul and Vishal Then designed a low-cost microscopy system that can aid in the diagnosis of the parasitic disease schistosomiasis by detecting eggs in urine samples, eliminating the need for a hospital visit.
The event was made possible by a three-year donation by scientist and entrepreneur Jonathan Rothberg, with the intent of inspiring the next generation of healthcare innovators.
Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering at the University of Pennsylvania, has received a Young Investigator Award from the Chinese Association for Biomaterials.
According to the Chinese Association for Biomaterials, “The CAB Young/Mid-Career Investigator Awards recognize the individuals who have successfully demonstrated significant achievements in the field of biomaterials research.”
The Chinese Association for Biomaterials was founded in 2015 at the Society for Biomaterials Annual Meeting. It is a non-profit professional organization that aims to facilitate exchange of research ideas and to promote collaboration among scientists in the fields of biomaterials research.
Mitchell joined the Department of Bioengineering at Penn in 2018 as Skirkanich Assistant Professor of Innovation. Previously, he was an NIH Ruth L. Kirschstein Postdoctoral Fellow with Institute Professor Robert Langer at the Koch Institute for Integrative Cancer Research at MIT. His research interests include biomaterials, drug delivery, and cellular and molecular bioengineering for applications in cancer research, immunotherapy, and gene therapy. Since joining Penn in 2018, Mitchell has received the NIH Director’s New Innovator Award, the Burroughs Wellcome Fund Career Award at the Scientific Interface, a Rising Star Award from the Biomedical Engineering Society, and the T. Nagai Award from the Controlled Release Society.
Chip Diagnostics is a Philadelphia-based device company founded in 2016 based on research from the lab of David Issadore, Assistant Professor of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science. The startup combines microelectronics, microfluidics, and nanomaterials with the aim to better diagnose cancer. The company is developing technologies and digital assays for minimally-invasive early cancer detection and screening that can be done using mobile devices.
There has been a long interest in diagnosing cancer using blood tests by looking for proteins, cells, or DNA molecules shed by tumors, but these tests have not worked well for many cancers since the molecules shed tend to be either nonspecific or very rare.
Issadore’s group aims to target different particles called exosomes: Tiny particles shed by cells that contain similar proteins and RNA as the parent cancer cell. The problem, explains Issadore, is that because of the small size of the exosomes, conventional methods such as microscopy and flow cytometry wouldn’t work. “As an engineering lab, we saw an opportunity to build devices on a nanoscale that could specifically sort the cancer exosomes versus the background exosomes of other cells,” he explains.
After Issadore was approached by the IP group at PCI Ventures in the early stages of their research, Chip Diagnostics has since made huge strides as a company. Now, as the awardee of the JPOD @ Philadelphia QuickFire Challenge, Chip Diagnostics will receive $30,000 in grant funding to further develop the first-in-class, ultra-high-definition exosomal-based cancer diagnostic. The award also includes one year of residency at Pennovation Works as well as access to educational programs and mentoring provided by Johnson & Johnson Family of Companies global network of experts.
They are among 496 recipients chosen this year from across the United States from out of more than 5,000 applicants. To date, 43 Penn students have received the award since Congress established the foundation in 1986 to honor the work of U.S. Sen. Barry Goldwater.
In a record year for the BE graduate program, twelve current and future students from the Department of Bioengineering were selected for the 2019 National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP). In addition, four more students were selected for honorable mention. This prestigious program recognizes and supports outstanding graduate students in NSF-supported fields. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of winning students and descriptions of their research.
Further information about the program can be found on the NSF website.
2019 NSF GRFP Recipients:
Tala Azar is a PhD student in the Liu lab. During pregnancy and lactation, the maternal skeleton mobilizes to provide calcium for the developing fetus and breastfeeding, respectively. Tala’s current work seeks to isolate individual effects of pregnancy and lactation on the biology and structure of maternal bone in a rat and mouse model, which is important for understanding the mechanisms behind postmenopausal osteoporosis development.
Shuting (Sarah) Cai is a current Bioengineering senior (BSE ’19). She previously worked in Dr. Lloyd Miller’s Dermatology and Immunology Lab at Hopkins during the summer of her freshman year, and she has since been working in Dr. Andrew Tsourkas’s lab here at Penn on various projects involving development of nanoparticles for multimodal imaging and cancer theranostics.
Brandon Hayes is a PhD student in the Discher lab. He is currently working on manipulating the macrophage immune checkpoint to exploit the mechanisms of phagocytosis for immunoengineering. The goal of this manipulation is to develop a new cell therapy and engineer new gene therapy and protein delivery approaches to target both immune cells and tumors.
Travis Kotzur is a PhD student in the Winkelstein lab. His project revolves around better understanding the mechanisms of neuronally transduced pain from an injury within his lab’s models of the spine and the ligaments within.
Victoria Muir is a PhD student in the Burdick lab. She is studying injectable hyaluronic acid hydrogels for musculoskeletal tissue regeneration and repair.
Margaret Schroeder graduated with a BSE in 2018 and is currently completing her MSE, both in BE. She works in the Meaney lab. She studies astrocytic modulation of mesoscale neural populations in vitro, in the context of traumatic brain injury. She images the calcium activity of neurons and astrocytes to examine how astrocytes affect population response to single-cell mechanical injury.
Olivia Teter is a current Bioengineering senior (BSE ’19). She works in the Meaney lab which focuses on traumatic brain injury. Olivia’s work has been dedicated to understanding how injury propagates in neuronal networks. She uses a combination of in vitro experiments and computational analyzes to identify and evaluate possible mechanisms describing how the neuronal network changes after injury.
Tanniel Winner graduated with her BSE from Penn BE in the fall of 2015 and is now a PhD candidate in the Neuromechanics Lab at Georgia Tech and Emory University. She is working on machine learning models to classify and predict gait cycle states.
Honorable Mentions:
Margaret Billingsley – PhD student in the Mitchell lab
Dennis Andrew Huang – BSE 2018, now at the University of Texas at Austin
Brianna Marie Karpowicz – current BE senior (BSE ’19) and MSE student in Data Science
In addition to her honorable mention, Margaret Billingsley was also awarded the Tau Beta Pi Fellowship, a selective program which provides a year of financial support for graduate study.
Finally, several honorees at other institutions will be joining our department in the fall of 2019. We congratulate them as well and look forward to welcoming them to Penn: