Penn Alumnus Peter Huwe Appointed Assistant Professor at Mercer University

Peter Huwe, Ph.D.

Peter Huwe, a University of Pennsylvania alumnus and graduate of the Radhakrishnan lab, was appointed Assistant Professor of Biomedical Sciences at the Mercer University School of Medicine beginning this summer 2020 semester.

Huwe earned dual B.S. degrees in Biology and Chemistry in 2009 from Mississippi College, where he was inducted into the Hall of Fame. At Mississippi College, Huwe had his first exposure to computational research in the laboratory of David Magers, Professor of Chemistry and Biochemistry. He went on to earn his Ph.D. in Biochemistry and Molecular Biophysics in 2014 in the laboratory of Ravi Radhakrishnan, Chair of the Bioengineering Department at Penn. As an NSF Graduate Research Fellow in Radhakrishnan’s lab, Huwe focused his research on using computational molecular modeling and simulations to elucidate the functional consequences of protein mutations associated with human diseases. Dr. Huwe then joined the structural bioinformatics laboratory Roland Dunbrack, Jr., Professor at the Fox Chase Cancer Center as a T32 post-doctoral trainee. During his post-doctoral training, Huwe held adjunct teaching appointments at Thomas Jefferson University and at the University of Pennsylvania. In 2017, Huwe became an Assistant Professor of Biology at Temple University, where he taught medical biochemistry, medical genetics, cancer biology, and several other subjects.

During each of his appointments, Huwe became increasingly more passionate about teaching, and he decided to dedicate his career to medical education. Huwe is very excited to be joining Mercer University School of Medicine as an Assistant Professor of Biomedical Sciences this summer. There, he will serve in a medical educator track, primarily teaching first and second year medical students.

“Without Ravi Radhakrishnan and Philip Rea, Professor of Biology in Penn’s School of Arts & Sciences, giving me my first teaching opportunities as a graduate guest lecturer at Penn, I may never have discovered how much I love teaching,” says Huwe. “And without the support and guidance of each of my P.I.’s [Dr.’s Magers, Radhakrishnan, and Dunbrack], I certainly would not be where I am, doing what I love.  I am incredibly thankful for all of the people who helped me in my journey to find my dream job.”

Congratulations and best of luck from everyone in Penn Bioengineering, Dr. Huwe!

Video Series Explores Penn Bioengineering’s Unique Bio-MakerSpace

A new series of short videos on the BE Labs Youtube Channel highlights the unique and innovative approach to engineering education found in The George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary teaching lab for the Department of Bioengineering at Penn Engineering. This video series explores how “engineering is fundamentally interdisciplinary” and demonstrates the ways in which Penn students from Bioengineering and beyond have combined the fields of biology, chemistry, and electrical, mechanical, and materials engineering into one exciting and dynamic “MakerSpace.”

“Our Bio-MakerSpace” takes viewers on a tour inside BE’s one-of-a-kind educational laboratories.

Produced primarily on smart phones and with equipment borrowed from the Penn Libraries, and software provided by Computing and Educational Technology Services, the videos were made by rising Bioengineering junior Nicole Wojnowski (BAS ‘22). Nicole works on staff as a student employee of the BE Labs and as a student researcher in the Gottardi Lab at the Children’s Hospital of Philadelphia (CHOP), helmed by Assistant Professor of Pediatrics Riccardo Gottardi.

Sevile Mannickarottu, Director of the Educational Labs in Bioengineering, says that the philosophy of the Bio-MakerSpace “encourages a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout Penn. We are the only open Bio-MakerSpace with biological, chemical, electrical, materials, and mechanical testing and fabrication facilities, all in one place, anywhere.”

Previous stories on the BE blog have gone into detail about how BE’s Bio-MakerSpace has become a hub for start-ups in recent years, how students can build their own makerspace for under $1500, and more. Major award-winning start-ups including Strella Biotechnology and InstaHub got their start in the BE Labs.

To learn more about the Bio-MakerSpace, check out the other videos below.

Katherine Sizov (Biology ‘19), founder of the 2019 President’s Innovation Prize (PIP) award-winning company Strella Biotechnology, discusses how the Bio-MakerSpace is a hub for interdisciplinary innovation.

Bioengineering doctoral student Dayo Adewole co-founded the company Instahub, which also took home a PIP award in 2019. Dayo also graduated from the BE undergraduate program in 2014. In this video, he discusses the helpfulness and expertise of the BE Labs staff.

Senior Associate Dean for Penn Engineering and Solomon R. Pollack Professor in Bioengineering David Meaney discusses how the Bio-MakerSpace is the only educational lab on campus to provide “all of the components that one would need to make the kinds of systems that bioengineers make.”

What do ‘Bohemian Rhapsody,’ ‘Macbeth,’ and a list of Facebook Friends All Have in Common?

New research finds that works of literature, musical pieces, and social networks have a similar underlying structure that allows them to share large amounts of information efficiently.

Examples of statistical network analysis of characters in two of Shakespeare’s tragedies. Two characters are connected by a line, or edge, if they appear in the same scene. The size of the circles that represent these characters, called nodes, indicate how many other characters one is connected to. The network’s density relates to how complete the graph is, with 100% density meaning that it has all of the characters are connected. (Image: Martin Grandjean)

 

By Erica K. Brockmeier

To an English scholar or avid reader, the Shakespeare Canon represents some of the greatest literary works of the English language. To a network scientist, Shakespeare’s 37 plays and the 884,421 words they contain also represent a massively complex communication network. Network scientists, who employ math, physics, and computer science to study vast and interconnected systems, are tasked with using statistically rigorous approaches to understand how complex networks, like all of Shakespeare, convey information to the human brain.

New research published in Nature Physics uses tools from network science to explain how complex communication networks can efficiently convey large amounts of information to the human brain. Conducted by postdoc Christopher Lynn, graduate students Ari Kahn and Lia Papadopoulos, and professor Danielle S. Bassett, the study found that different types of networks, including those found in works of literature, musical pieces, and social connections, have a similar underlying structure that allows them to share information rapidly and efficiently.

Technically speaking, a network is simply a statistical and graphical representation of connections, known as edges, between different endpoints, called nodes. In pieces of literature, for example, a node can be a word, and an edge can connect words when they appear next to each other (“my” — “kingdom” — “for” — “a” — “horse”) or when they convey similar ideas or concepts (“yellow” — “orange” — “red”).

The advantage of using network science to study things like languages, says Lynn, is that once relationships are defined on a small scale, researchers can use those connections to make inferences about a network’s structure on a much larger scale. “Once you define the nodes and edges, you can zoom out and start to ask about what the structure of this whole object looks like and why it has that specific structure,” says Lynn.

Building on the group’s recent study that models how the brain processes complex information, the researchers developed a new analytical framework for determining how much information a network conveys and how efficient it is in conveying that information. “In order to calculate the efficiency of the communication, you need a model of how humans receive the information,” he says.

Continue reading at Penn Today.

Beth Winkelstein Appointed Deputy Provost at Penn

Provost Wendell Pritchett has announced the appointment of Beth Winkelstein as Deputy Provost.

Beth Winkelstein, Ph.D.

“Beth Winkelstein has become one of our most essential leaders of teaching, learning, and student life,” said Pritchett, “since she began her tenure as vice provost for education five years ago. Her insight and energy enhance every part of our campus. She leads both undergraduate and graduate education, collaborating with deans, faculty leaders, and the Office of the Vice Provost for University Life, as well as the Council of Undergraduate Deans, Council of Graduate Deans, Graduate Council of the Faculties, and Council of Professional Master’s Degree Deans.

“As deputy provost, she will continue this invaluable work while working closely with me to better integrate and expand our educational initiatives, especially by incorporating new technologies, new ways of teaching, and additional supports for faculty and students that advance our core priorities of innovation, impact, and inclusion,” Pritchett said. “As we enter this new and challenging phase of Penn history, Beth is the perfect person to help us chart the landscape ahead.”

Drawing on her experience as a former Penn undergraduate, Winkelstein has been a dynamic leader of initiatives to enhance undergraduate student life, especially the new Penn First Plus program, which provides targeted support for first-generation and/or low-income students, and the dedicated Second-Year Experience, which offers enhanced programs for second-year students to accompany Penn’s new second-year housing requirement. She has at the same time been a vital advocate for graduate and professional students, overseeing the Graduate Student Center and Family Center, while advancing a series of initiatives to improve every aspect of support for students’ academic progress, professional advancement, and work-life balance. Her leadership spans such key areas as College Houses and Academic Services, New Student Orientation, the Center for Undergraduate Research and Fellowships, and the Office of Student Conduct. And that leadership has been especially critical for the Online Learning Initiative and the Center for Teaching and Learning, in these recent months when that work has become central to Penn’s educational efforts.

Winkelstein’s leadership is based in her deep knowledge of and appreciation for the University, as well as her own scholarly and research distinction. She has taught in the Bioengineering Department in the School of Engineering and Applied Science since 2002, becoming in that time one of the world’s leading innovators in research on new treatments for spine and other joint injuries. Appointed two years ago as the Eduardo D. Glandt President’s Distinguished Professor, she continues to lead her pioneering Spine Pain Research Lab, mentor students and postdocs, and serve as co-editor of the Journal of Biomechanical Engineering. Among her many professional honors, she is a Fellow of the Biomedical Engineering Society and the American Society of Mechanical Engineering and was elected to the American Institute for Medical and Biological Engineering and the World Council of Biomechanics.

Winkelstein earned a Ph.D. in bioengineering from Duke University and a B.S.E. cum laude in bioengineering from Penn as a Benjamin Franklin Scholar.

Originally posted in Penn Today.

Dan Huh Receives Chan Zuckerberg Initiative Grant for Placenta-on-a-chip Research

CRI huh
Dan Huh, Ph.D.

The Chan Zuckerberg Initiative (CZI) has announced $14 million in funding to support 29 interdisciplinary teams who are investigating the role of inflammation in disease. Among these recipients is Dan Huh, Associate Professor in Bioengineering, whose placenta-on-a-chip research will “explore how maternal and fetal cells respond to specific inflammatory signals and analyze the network of placental cells and immune cells that impact pregnancy outcomes in chronic inflammatory diseases.”

Kellie Ann Jurado, Presidential Assistant Professor in the Perelman School of Medicine’s Department of Microbiology, will lead the research team. She and Huh will collaborate with Monica Mainigi, William Shippen, Jr. Assistant Professor of Human Reproduction in Penn Medicine.

A version of the Huh Lab’s placenta-on-a-chip from 2018

Huh’s placenta-on-a-chip consists of a small block of silicone containing microfluidic channels separated by a membrane of human cells. Variations in designs and cell types allow researchers to study how different molecules cross that barrier, allowing for experiments that would be otherwise impossible or unethical. For example, Huh and his group previously used a placenta-on-a-chip designed to model the placental barrier to research the effect of maternally-administered medications on the fetal bloodstream.

In this new study, Huh, Jurando and Mainigi were motivated by even more fundamental questions of pregnancy.

“It has been known for quite some time that women with chronic inflammatory diseases are at increased risk of developing various complications during pregnancy,” Huh says. “Despite accumulating clinical evidence, we understand little about how inflammation contributes to adverse pregnancy outcomes.”

Read the full story on the Penn Engineering blog.

Bridging the Communication Divide for Deaf and Hard-of-hearing Communities

Clear-fronted face masks, better and more frequent interpreters, and amped up involvement from local organizations have made a big difference during the COVID-19 pandemic.

By Michele Berger

Since April 23, when bioengineering alum Kate Panzer (above) and her partners at the Deaf-Hearing Communication Centre started taking orders for masks with clear fronts, they’ve shipped about 450, with a backlog of requests for hundreds more. (Image: Courtesy Kate Panzer)

Because COVID-19 spreads via respiratory droplets that disperse through sneezes and coughs, shielding the mouth and nose is an important weapon against the virus. But it can also hinder conversations for people who rely on reading lips. “Communication barriers are already difficult sometimes, and this makes it more difficult,” says linguist , director of ’s .

It’s one of the trickiest aspects of this pandemic for those in the Deaf and hard-of-hearing communities, Fisher says. The challenge doesn’t stem just from misunderstandings due to wearing masks. It’s also about the dissemination of accurate and timely information, knowing who to rely on and how to assess what’s being said.

Trusted sources like the Swarthmore, Pennsylvania–based nonprofit Deaf-Hearing Communication Centre (DHCC), a Penn community partner, have filled that gap, frequently updating information on its social media channels and websites. Governors and mayors are more frequently using Certified Deaf Interpreters (CDI) during press briefings, and Penn alum Kate Panzer, who graduated in 2018, started a project with DHCC to sew masks with clear fronts to offer both lip-reading access and protection.

Innovative masks

Like much of the country, Panzer has stayed inside for the past several months. When the pandemic started to worsen, she temporarily left a research position in Michigan and returned to her childhood home in Media, Pennsylvania. And like many people, she wanted to give back.

At Penn, she’d taken several American Sign Language classes through the program Fisher runs, so when she read an article about a student in Kentucky making clear-fronted masks, it piqued her interest. She reached out to Fisher, who connected her with Kyle Rosenberg, DHCC’s community development and outreach coordinator.

As a volunteer, she shared her mask idea with Rosenberg. “Even in normal times, the Deaf community really struggles with clear communication,” says Rosenberg, who is himself deaf. “ASL is very visual. It relies on body language. Covering up the mouth with a mask makes communication 10 times harder.”

Rosenberg helped Panzer tweak a design and create a process to reach the community, and they took their first order on April 23. Since then, they’ve shipped about 450 masks, with a backlog of requests for hundreds more.

Though the response has been overwhelmingly positive, when constructive feedback comes in, they do take it to heart, Panzer says. For example, when mask-wearers told them that the elastic bands they’d been using rubbed uncomfortably against hearing aids, they switched to fabric ties that go around the back of the head. The masks are not medical grade, so they can’t be used in a hospital setting, but Panzer says her goal was to improve everyday interactions.

“When you can only see the eyes, it takes a lot out of expressive communication for Deaf people,” says Fisher, whose parents and one brother are deaf. “It’s really important that they be able to more fully convey facial expressions and mouth movements that influence meaning.” Masks with clear fronts help.

Continue reading at .

Kate Panzer earned her bachelor’s degree in 2018 from the Department of Bioengineering in the School of Engineering and Applied Science at the University of Pennsylvania. She is currently a disability health and family medicine research assistant at Michigan Medicine at the University of Michigan. 

NB: Kate has done prior work with ASL during her time at Penn Bioengineering. Kate’s 2018 Senior Design team created a two-way interface to help communication between deaf patients and hearing medical professionals called MEDISIGN. Fellow team members included fellow BE alumni Jackie Valeri, Nick Stiansen, and Karol Szymula. Watch their presentation on the Penn Engineering youtube channel.

President’s Innovation Prize Winner Strella Biotechnology Raises $3.3 Million in Seed Funding

Alumni Malika Shukurova (left) and Katherine Sizov, Strella Biotechnology

Last year, Katherine Sizov (BIO ’19) and Malika Shukurova (BE ’19) earned the 2019 President’s Innovation Prize for their plan to use Internet-of-Things technology to monitor fruit ripeness and reduce waste in produce supply chains. Their company, Strella Biotechnology, received $100,000 of financial support, a $50,000 living stipend for both awardees, and a year of dedicated co-working and lab space at the Pennovation Center.

Now, it has $3.3 million on hand as it attempts to take its technology into retail stores.

As reported in Technically Philly and the Philadelphia Business Journal, the “fruit hacking” company’s seed round funding comes from several venture capital firms, including Pennovation’s Red & Blue Ventures, as well as celebrity investor Mark Cuban.

Strella’s ethylene sensors are already being used by fruit packers in order to more precisely time shipments as their produce ripens. The Penn start-up company thinks retailers could similarly benefit when it comes to deciding when to put their stock out for sale.

Read more at Technically Philly and the Philadelphia Business Journal.

Originally posted on the Penn Engineering Blog.

NB: The initial work for Strella Biotechnology was done by Sizov in Penn Bioengineering’s  George H. Stephenson Foundation Educational Laboratory and Bio-MakerSpace. Read more about how BE’s Bio-MakerSpace has become a hub for start-ups here.

Lyle Ungar on Normalizing Face Masks

As scientists continue to battle the novel coronavirus, public health officials maintain that wearing a face mask is a powerful way to curb the spread of the virus and keep communities safe. However, America has struggled to adopt this change, as compared to other countries that have made wearing a face mask an unremarkable aspect of their culture.

Lyle Ungar, Ph.D.

In an opinion piece for the New York Times, Lyle Ungar, Professor of Computer and Information Science, Angela Duckworth, Rosa Lee and Egbert Chang Professor in Penn Arts & Sciences and the Wharton School, and Ezekiel J. Emanuel, Professor of Medical Ethics and Health Policy in Penn’s Perelman School of Medicine, propose a new approach to increase consistent face mask use among Americans: make wearing a mask “easy,” “understood,” and “expected.”

In their article, Ungar, Duckworth, and Emanuel make reference to communities that provided face masks free of charge for residents and note the decrease in infection in these areas. In addition, they point out how uncertainty about the necessity of face masks in the U.S. has led to public confusion which inhibits trust and use of masks. Finally, the three researchers push for a shift in social norms to embrace wearing a face mask as standard in America for the near future.

Some of Ungar’s recent research is also focused on the pandemic, including a “COVID Twitter map,” created with colleagues at the World Well-Being Project and Penn Medicine’s Center for Digital Health. Their map helps show, in real time, how people across the country perceive the virus and how it is affecting their mental health.

Read more about Ungar, Duckworth, and Emanuel’s strategy for normalizing face masks in their opinion piece for the New York Times.

Originally posted on the Penn Engineering blog.

Lyle Ungar is a Professor of Computer and Information Science (CIS) and a member of the Penn Bioengineering Graduate Group.

Jennifer Phillips-Cremins Promoted to Associate Professor

 

Jennifer Phillips-Cremins, Ph.D.

by Sophie Burkholder

Jennifer Phillips-Cremins, Ph.D., was recently promoted to the tenured position of Associate Professor in Penn’s Department of Bioengineering. Cremins, leads a lab on campus in 3D Epigenomes and Systems Neurobiology.

In a recent piece profiling top technologies to watch in 2020, Cremins spoke to Nature about which technological trends she saw as being important for the year to come. In the panel, which highlighted perspectives from a panel of researchers across several fields, Cremins discussed the increasing relevance of innovations that would allow researchers to study the way that folding patterns within the human genome can influence how genes are expressed in  healthy individuals and misregulated in human disease.

One such innovation is actually employed by the Cremins Lab: light-activated dynamic looping (LADL). This technique uses both CRISPR/Cas9 and optogenetics to induce folding patterns into the genome on demand, using light as a trigger. In doing so, Cremins and her fellow researchers can more efficiently study the patterns of the human genome, and what effects certain folding patterns can have on the gene expression  state of the cell.

Now, with her new promotion, Cremins can continue advancing her research in understanding the genetic and epigenetic mechanisms that regulate neural connections during brain development, with a focus on how that understanding can eventually lead to better treatments of neurological disease. Beyond the lab, she’ll now lead a new Spatial Epigenetics program, bringing together scientists across Penn’s campus to understand how the spatial connections between biomolecules influence biological behavior. She will also continue teaching her hallmark course for Penn Bioengineering undergraduate students, Biological Data Science, and her more advanced graduate-level course in epigenomics. Congratulations, Dr. Cremins!

How Penn’s Medical Device Development Course Adapted to the COVID-19 Pandemic

Though BE 472 was able to quickly pivot to an entirely online curriculum, some in-person aspects of the course were unfortunately lost. Pictured: BE 472’s Spring 2019 MedTech panel discussion with industry leaders Katherine High, MD (President of Spark Therapeutics), Lucas Rodriguez, PhD (CEO of CerSci Therapeutics), and Penn BE alumnus Brianna Wronko (CEO of Group K Diagnostics) (credit: Lauren McLeod BE 2020).

by Sophie Burkholder

Given the closing of schools in response to the coronavirus pandemic, professors teaching lab-based courses were forced to make some changes. One such course, the Department of Bioengineering’s Medical Device Development (BE 472) taught by Matthew R. Maltese, Ph.D., usually requires students to develop a medical device and learn how to lead a startup venture for it. Over the semester, students design prototypes for unmet needs in the medical device community, and then go on to learn about business-related aspects of the project, like fundraising, regulations, teamwork, and leadership. Maltese often encourages junior engineering students to take the course, in the hopes that their projects might become launchpads for their senior design projects the following year.

But with the pandemic’s interruptions to education restricting access to the lab, or even to some of the schematics for their earlier designs, Maltese’s Spring 2020 students had to re-focus on the business side of their projects.

Fortunately, the shift to online learning came late enough in the semester that most students had already come up with solid project ideas. Maltese then shifted gears to the less hands-on parts of the course. “There’s lots of elements to this course that are not focused on putting hands on hardware,” he says. “They’re focused on distilling and disseminating information about your endeavor to people that are interested.”

While some of those more hands-off assignments originally had some face-to-face aspects, like the final pitch competition, they’re also easy to transition to an online format. Maltese had students record videos of their pitches, which he notes is perhaps more akin to what they might have to do for external pitch competitions. And even though students couldn’t make their physical prototypes, Maltese says that they were all able to make virtual prototypes through CAD or other modeling software.

In his opinion, this renewed focus on out-of-lab prototype models might be a good thing for real-world experience. Investors and stakeholders often want the full picture of a device or startup before they even have to start working with physical material, for the sake of cost efficiency.

Students had already been working on their projects for a couple of months before the pandemic started to affect classes, so most of them stuck to their original ideas instead of adapting them to meet the needs of the current medical crisis. “Next year, I think we’re going to focus the class on COVID-19 ideas though,” says Maltese.

In fact, Medical Device Development will likely be one of many Penn Bioengineering courses that adapts its curriculum to the challenges the pandemic presented. “As a medical device community, a pharmaceutical community, a healthcare community, we were not ready for this,” Maltese notes, “but history teaches us that some of our greatest innovations emerge from our greatest trials.”  He is excited for the future.