BE Seminar: “Stem Cell Fate is a Touchy Subject” (Quinton Smith, MIT)

The first lecture in the Fall 2020 Penn Bioengineering Seminar Series will be held Thursday, September 10th. All seminars this semester will be held virtually on Zoom.

Quinton Smith, PhD

Speaker: Quinton Smith, Ph.D.
Postdoctoral Fellow
Laboratory for Multiscale Regenerative Technologies
Massachusetts Institute of Technology

Date: Thursday, September 10, 2020
Time: 3:00-4:00 pm
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Stem Cell Fate is a Touchy Subject”

Abstract:

The success of regenerative cell therapy relies on the integration of a functional vascular system within the redeveloping tissue, to mediate the exchange of oxygen, nutrients and waste. Although the advent of human induced pluripotent stem cells (hiPSCs) has accelerated progress towards this goal, owing to their potential to generate clinically relevant scales of patient-specific cells, techniques to drive their specification mainly rely on chemical cues. In this seminar, I will discuss engineering strategies to control the complex stem cell extracellular milieu, emphasizing the importance of mechanical cues during hiPSC development, specification and downstream functionality as it relates to vascular differentiation.

Bio:

Quinton Smith received his PhD in Chemical and Biomolecular Engineering from Johns Hopkins University in 2017 after completing his bachelor’s degree in Chemical Engineering from the University of New Mexico. As a graduate student under the guidance of Dr. Sharon Gerecht, Quinton implemented various engineering tools to explore the roles of physical and chemical cues on stem cell lineage specification and downstream maturation. Dr. Smith is currently a postdoctoral fellow under the mentorship of Dr. Sangeeta Bhatia at MIT’s Koch Institute for Integrative Cancer Research, where he is investigating the role biliary epithelium in liver regeneration. Dr. Smith’s predoctoral work was supported by an NIH/NHLBI F-31 and NSF Graduate Research Fellowship. He is a recipient of the 2017 Siebel Scholar award, and most recently joined the class of 2018 HHMI Hanna Gray Fellows.

See the full list of upcoming Penn Bioengineering fall seminars here.

Jennifer Phillips-Cremins Wins CZI Grant to Study 3D Genome’s Role in Neurodegenerative Disease

The Chan Zuckerberg Initiative’s Collaborative Pairs Pilot Project Award is part of its Neurodegeneration Challenge Network

Jennifer Phillips-Cremins, Ph.D.

Read the full story on the Penn Engineering blog.

Danielle Bassett on ‘A Radical New Model of the Brain’

In a ‘Wired’ feature, Bassett helps explain the growing field of network neuroscience and how the form and function of the brain are connected.

Danielle Bassett, Ph.D.

Early attempts to understand how the brain works included the pseudoscience of phrenology, which theorized that various mental functions could be determined through the shape of the skull. While those theories have long been debunked, modern neuroscience has shown a kernel of truth to them: those functions are highly localized to different regions of the brain.

Now, Danielle Bassett, Professor of J. Peter Skirkanich Professor of Bioengineering and Electrical and Systems Engineering, is pioneering a new subfield that goes even deeper into the connection between the brain’s form and function: network neuroscience.

In a recent feature article in Wired, Bassett explains the concepts behind this new subfield. While prior understanding has long relied on the idea that certain areas of the brain control certain functions, Bassett and other network neuroscientists are using advances in imaging and machine learning to reveal the role the connections between those areas play.

For Bassett, one of the first indicators that these connections mattered more than previously realized was the shape of the neurons themselves.

Speaking with Wired’s Grace Huckins, Bassett says:

“Neurons are not spherical — neurons have a cell body, and then they have this long tail that allows them to connect to many other cells. You can even look at the morphology of the neuron and say, ‘Oh, well, connectivity has to matter. Otherwise, it wouldn’t look like this.’”

Read more about Bassett and the field of network neuroscience in Wired.

Originally posted on the Penn Engineering blog.

Meet Bioengineering Sophomore and SNF Paideia Fellow Catherine Michelutti

Catherine Michelutti (BSE, BS ’23)

Rising Bioengineering Sophomore Catherine Michelluti (BSE 2023) has been featured on Penn’s SNF Paideia Program Instagram which discusses her diverse interests in machine learning in medicine, computer science, playing the violin and more. Catherine is a pre-med student who is pursuing an uncoordinated dual degree between the School of Engineering and Applied Science and the Wharton School of Business (BS in Economics 2023). She is also an incoming fellow in the SNF Paideia Program, which is supported by the Stavros Niarchos Foundation, is an interdisciplinary program which “encourage[s] the free exchange of ideas, civil and robust discussion of divergent views, and the integration of individual and community wellness, service, and citizenship through SNF Paideia designated courses, a fellows program, and campus events” (SNF Paideia website).

Read more about Catherine and other Fellows on the SNF Paideia Instagram.

Penn Bioengineering Postdoc Brittany Taylor Appointed Assistant Professor at University of Florida

 

Brittany Taylor, PhD

The Department of Bioengineering is proud to congratulate Postdoctoral Researcher Brittany Taylor, PhD on her appointment as a tenure-track Assistant Professor in the J. Crayton Pruitt Family Department of Biomedical Engineering of the Herbert Wertheim College of Engineering at the University of Florida. Taylor’s appointment will begin in January 2021 after four years as a postdoc in Penn Medicine’s McKay Orthopaedic Research Laboratory where she worked under the supervision of Louis Soslowsky, Fairhill Professor in Orthopaedic Surgery and Professor in Bioengineering.

Taylor got her BS in Biomedical Engineering from the University of Virginia where she conducted research under Drs. Cato Laurencin and Edward Botchwey (the latter got his PhD in Penn Bioengineering in 2002). She went on to complete her PhD in Biomedical Engineering in 2016, studying with Dr. Joseph Freeman, in the Musculoskeletal Tissue Regeneration Laboratory at Rutgers University. During her time at Penn, she served as the Co-President of the Biomedical Postdoctoral Council, worked with the Perelman School of Medicine’s PennVIEW program on postdoctoral diversity recruitment, and spearheaded the mentoring circles program, which brings together postdoctoral researchers, graduate students, and undergraduates in informal groups that allow mentorship and learning to flow freely.

The foundation for Taylor’s research interests is a combination of her training in bone tissue engineering, bioactive biomaterials, and tendon injury and repair. Her graduate research focused on a three-dimensional biomimetic pre-vascularized scaffold that simultaneously promoted osteogenic and angiogenic differentiation of human mesenchymal stem cells in vitro and cellular infiltration and neovascularization in vivo without the addition of growth factors of cells. As a postdoctoral fellow, in addition to investigating the role of collagen type V on tendon inflammation and remodeling in a mouse patellar tendon injury model, she also elucidated the biological and mechanical implications of an implantable bilayer delivery system (BiLDS) for controlled and localized release of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate tendon inflammation in a rat rotator cuff injury and repair model. This collection of work exploits the ability of these transformative technologies to provide physical and chemical regenerative cues without the use of exogenous cells; hence avoiding possible complications associated with autologous and allogeneic cell sources and simplifying the regulatory pathway towards clinical application. Taylor’s future research program at the University of Florida will focus on tailored cell-free combinatorial strategies, such as decellularized matrices, tunable delivery systems, and modified extracellular vesicles, to complement and improve the native musculoskeletal tissue regenerative and reparative process.

“Brittany has been an amazing postdoctoral fellow,” says her mentor Louis Soslowsky. “She has learned a lot and contributed to various projects in an exemplary manner. She has been a leader in many arenas here at Penn and I am so proud of what she has done so far. I look forward to following her continued accomplishments at the University of Florida! I know she’ll do great!”

In the course of her pre-faculty career, Taylor achieved an impressive list of accomplishments. She received a Postdoctoral Fellowship for Academic Diversity from the Office of the Vice Provost for Research; a Postdoctoral Enrichment Program (PDEP) award from the Burroughs Wellcome Fund; and a UNCF Bristol-Myers Squibb E.E. Just Postgraduate Fellowship. Additionally, she was named a Rising Star in Cell Mentor’s list of “100 inspiring Black scientists in America” in February 2020 and was given a Rising Star in Biomedical Science Award from MIT in 2019.

“I am grateful for the opportunity to complete my postdoctoral training at Penn,” Taylor says:

“[P]articularly in a lab that is affiliated with the Penn Bioengineering program and the Department of Orthopaedic Surgery, where I had the unique experience of addressing basic science questions using translational animal models, while utilizing my engineering background and having a direct interaction with clinicians. Additionally, I connected with some amazing people here at Penn who had a significant impact on my time at Penn, and will be lifelong friends, colleagues, and mentors.”

Congratulations Dr. Taylor from everyone at Penn Bioengineering!

‘For Neurodegeneration, a Different Way to Slice the Pie’

Danielle Bassett, Ph.D.

Danielle Bassett, J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, has been called the “doyenne of network neuroscience.” The burgeoning field applies insights from the field of network science, which studies how the structure of networks relate to their performance, to the billions of neuronal connections that make up the brain.

Much of Basset’s research draws on mathematical and engineering principles to better understand how mental traits arise, but also applies them more broadly to other challenges in neuroscience.

In her latest paper, “Defining and predicting transdiagnostic categories of neurodegenerative disease,” published in the journal Nature Biomedical Engineering, Bassett collaborated with the Perelman School of Medicine’s Virginia Man-Yee Lee and John Trojanowski to provide a new perspective on the misfolded proteins associated with those diseases.

The researchers used machine learning techniques to create a new classification system for neurodegenerative diseases, one which may redraw the boundaries between them and help explain clinical differences in patients who received the same diagnoses.

BioWorld’s Anette Breindl spoke with Bassett about the team’s findings.

Now, investigators have developed a new approach to classifying neurodegenerative disorders that used the overall patterns of protein aggregation, rather than specific proteins, to define six clusters of patients that crossed traditional diagnostic categories.

“We find that perhaps the way that clinicians have been diagnosing these disorders… is not necessarily the way these disorders work,” Danielle Bassett told BioWorld. “The way we’ve been trying to carve nature at joints is not the way that nature has joints. The joints are elsewhere.”

Continue reading Breindl’s article, “For neurodegeneration, a different way to slice the pie,” at BioWorld.

Originally posted on the Penn Engineering blog. Media contact Evan Lerner.

Postdoctoral Researcher Yogesh Goyal Wins BWF Career Award

Yogesh Goyal, Ph.D.

The Department of Bioengineering at Penn is thrilled to congratulate Yogesh Goyal, PhD on receiving a Burroughs Wellcome Fund (BWF) Career Award at the Scientific Interface (CASI) award for 2020-2025. He is currently a Jane Coffins Child Fellow in the lab of Arjun Raj, Professor of Bioengineering.

The BWF CASI Career Awards provide $500,000 over five years to bridge advanced postdoctoral training and the first three years of faculty service; and to foster the early career development of researchers who have transitioned from physical/mathematical/computational sciences or engineering into the biological sciences, and who are dedicated to pursuing a career in academic research. Goyal is one of just eight recipients of the 2020-2025 CASI award.

Goyal did much of his schooling in Jammu and Kashmir, India, and received his undergraduate degree in Chemical Engineering at the Indian Institute of Technology, Gandhinagar. He received his PhD from Princeton University in the Department of Chemical and Biological Engineering and the Lewis-Sigler Institute for Integrative Genomics, under the joint mentorship of Stanislav Shvartsman, PhD, and Gertrud Schüpbach, PhD. After finishing his doctorate, he came to Penn Bioengineering to work in the Raj Lab for Systems Biology.

Goyal’s research work is centered around developing novel mathematical and experimental frameworks to study how a rare subpopulation of cancer cells are able to survive drug therapy and develop resistance, resulting in relapse in patients. In particular, his work will provide a view of different paths that single cancer cells take when becoming resistant, at unprecedented resolution and scale. In turn, this will help devise novel therapeutic strategies to combat the challenge of drug resistance in cancer.

“I am very excited to be a part of the community of the Burroughs Wellcome Fund CASI award past and present recipients, which also includes my postdoctoral adviser Arjun Raj, who received this award in 2008,” Goyal says. “This CASI award will help provide me with the freedom to pursue high risk research directions as I transition to faculty. I feel fortunate to be surrounded by kind and supportive colleagues in the Bioengineering Department at Penn, an environment that has been critical for my interdisciplinary journey as a scientist.”

Penn Launches Region’s First Center for Translational Neuromodulation

Penn’s brainSTIM center will study neuromodulation to repair and enhance human brain function

Penn Medicine has launched a new center to study the brain, one of the most complex systems in the body:

The Penn Brain Science, Translation, Innovation, and Modulation (brainSTIM) Center brings together a team of leading neuroscientists, neurologists, psychiatrists, psychologists, and engineers at Penn using neuromodulation techniques to research, repair, and enhance human brain function—the first translational center of its kind in the region.

Among the key faculty involved in this new center is J. Peter Skirkanich Professor of Bioengineering Danielle Bassett. Bassett’s Complex Systems Lab studies biological, physical, and social systems by using and developing tools from network science and complex systems theory. Bassett, along with Assistant Professor of Psychiatry Desmond Oathes, will work to:

understand how TMS [i.e. transcranial magnetic stimulation] might improve working memory in healthy adults and those with ADHD by combining network control theory (a set of concepts and principles employed in engineering), magnetic stimulation of the brain, and functional brain imaging.

Read more at Penn Medicine News.

Why This Bioengineering Ph.D. Student Pursued Impact Investing

In a Q&A, Bioengineering doctoral candidate Ana P. Peredo explains how the idea of “regeneration” motivated her to join WIVA, Wharton Social Impact’s impact investing program.

Why would you — a bioengineering Ph.D. student — seek to join WIVA?

As a bioengineering Ph.D. student, Ana P. Peredo is currently working on the development of regenerative methods and drug-delivery approaches for musculoskeletal tissue

“As a high school student, I was motivated to study bioengineering because of its potential to generate impact through technical innovation. To me, bioengineering was a way to apply engineering principles to create medical technology in the hopes of devising solutions for global health concerns.

Though I have gained significant understanding of the current pressing healthcare needs, I felt that I was missing a key understanding of how investors think about social impact. To better understand how to apply my science background to the impact space, I joined WIVA. I also wanted to venture outside of healthcare and learn about other important social impact sectors such as education, energy, and environment, all of which WIVA explores in its deal-sourcing process.”

What have you learned through WIVA that you have not been exposed to before?

“I learned how to assess early-stage startups for their impact and return-on-investment potential, as well as how to rigorously analyze company financials and projections.

I also had the opportunity to meet leading social impact professionals through WIVA. I attended a Wharton Social Impact Initiative event with Vincent Stanley, the Director of Philosophy at Patagonia. From this discussion, I learned about how the word ‘sustainable’ continues to be misused by companies and how companies should try to ‘regenerate’ the resources they consume to be truly deemed sustainable.

This conversation brought to mind my research experience with regeneration — could I use my WIVA deal-sourcing techniques to find impactful startups that use this concept?”

Continue reading at Wharton Stories.

César de la Fuente Wins Inaugural NEMO Prize, Will Develop Rapid COVID Virus Breath Tests

The paper-based tests could be integrated directly into facemasks and provide instant results at testing sites.

Cesar de la Fuente-Nunez, PhD

When Penn Health-Tech announced its Nemirovsky Engineering and Medicine Opportunity, or NEMO Prize, in February, the center’s researchers could only begin to imagine the impact the looming COVID-19 pandemic was about to unleash. But with the promise of $80,000 to support early-stage ideas at the intersection of engineering and medicine, the contest quickly sparked a winning innovation aimed at combating the crisis.

Judges from the University of Pennsylvania’s School of Engineering and Applied Sciences and Perelman School of Medicine awarded its first NEMO Prize to César de la Fuente, PhD, who proposed a paper-based COVID diagnostic system that could capture viral particles on a person’s breath, then give a result in a matter of seconds when taken to a testing site.

Similar tests for bacteria cost less than a dollar each to make. De la Fuente, a Presidential Assistant Professor in the departments of Psychiatry, Microbiology, and Bioengineering, is aiming to make COVID tests at a similar price point and with a smaller footprint so that they could be directly integrated into facemasks, providing further incentive for their regular use.

“Wearing a facemask is vital to containing the spread of COVID because, before you know you’re sick, they block your virus-carrying droplets so those droplets can’t infect others,” de la Fuente says. “What we’re proposing could eventually lead to a mask that can be infected by the virus and let you know that you’re infected, too.”

De la Fuente’s lab has conducted molecular dynamic simulations of the regions of the SARS-COV-2 spike protein (blue) that bind to the human ACE2 receptor (red and yellow).

De la Fuente’s expertise is in synthetic biology and molecular-scale simulations of disease-causing viruses and bacteria. Having such fine-grained computational models of these microbes’ binding sites allow de la Fuente to test them against massive libraries of proteins, seeing which bind best. Other machine learning techniques can then further narrow down the minimum molecular structures responsible for binding, resulting in functional protein fragments that are easier to synthesize and manipulate.

The spike-shaped proteins that give coronaviruses their crown-like appearance and name bind to a human receptor known as ACE2. De la Fuente and his colleagues are now aiming to characterize the molecular elements and environmental factors that would allow for the most precise, reliable detection of the virus.

Read the full story on the Penn Engineering blog.