Neurology, bioengineering, and physical medicine and rehabilitation might not seem like three disciplines that fit together, but for Flavia Vitale, an assistant professor of all three, it makes perfect sense. As the director and principal investigator at the Vitale Lab, her research focuses on developing new technologies that help to study how the brain and neuromuscular systems function.
Years ago, while she was working at Rice University developing new materials and devices that work in the body in a safer, more effective way, former president Barack Obama launched the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative, aimed at revolutionizing the understanding of the human brain. This emphasis on how little is known about brain structure and function inspired Vitale to refocus her research on developing technology and materials that will help researchers solve the mysteries of the brain.
In 2018, she joined the faculty at the Perelman School of Medicine as an assistant professor of neurology, bioengineering, and physical medicine and rehabilitation, and founded the multidisciplinary Vitale Lab, where her team develops cutting edge materials and devices that will someday help clinicians diagnose and treat patients with complicated brain and neurological conditions. She is also one of the engineers looking forward to using new combined clinical/research facilities in neuroscience at Penn Medicine’s new Pavilion where new neurotechnoloigies will be developed and tested.
“My main goal is to create tools that can help solve mysteries of the brain, and address the needs of clinicians,” she says.
“My lab was recently awarded two grants totaling $4.5 million from the National Institute of Neurological Disorders and Stroke. In order to obtain more precise insights, noninvasively, into brain activity to improve gene therapy treatments for a range of diagnoses, from Parkinson’s disease to glioblastoma. The first grant is designated for the development of a novel surgical device for delivering gene-based therapeutics to the brain. The second is for optimization and pre-clinical validation of a novel EEG electrode technology, which uses a soft, flexible, conductive nanomaterial rather than metal and gels. We hope to confirm that these technologies work as well as, if not better than existing ones.”
Read the full story in Penn Medicine News.