A Solution for Liver Testing for 10 Dollars

Brianna Wronko (left) and Guyrandy Jean-Gilles (right)

One of the Penn Bioengineering Department’s senior projects was the work of a two-person team: Brianna Wronko and Guyrandy Jean-Gilles. The result of their work was the MultiDiagnostic, a microfluidics platform that the two students describe as “A Fast, Inexpensive, and Accessible Diagnostic Solution.”

Brianna says that the project was originally conceived as a way for HIV clinics and treatment centers to test biological parameters such as viral load. However, the inability of Brianna and Guy to handle HIV-infected blood in the lab, as well as the desire to generate a product that could both serve patients directly and have a commercial focus. They decided their first offering would consist of liver function tests.

Manufactured by an automated process, the MultiDiagnostic is a paper microfluidics platform with a software component that can be run on a computer or cell phone. When a bodily fluid is placed into the platform, it diffuses into separate chambers of the platform, where colorimetric analysis is then conducted and data communicated via the software’s graphical user interface to the user.

The students currently have the platform in preclinical trials for the testing of aspartase aminotransferase and alkaline phosphatase; the ability to test alanine aminotransferase, bilirubin, and total protein are in the prototyping stage. Their current model is priced at a $10 customer price, which is considerably less expensive than competing technologies already on the market.

Among the most interesting aspects of this senior project team, other than the product itself, was that it had only two members. Asked how this fact affected their work, Brianna admitted that it posed a bit of an obstacle at first. However, she said, “we decided to break up the concept into parts, with me doing the wet lab parts, in which I have a background and Guy, whose background is in software, doing those parts.” In the end, they’re very happy with their final product.

Students Receive Awards for the Year

students receiving awards
Students in the BE Department have received several awards

Every year the Penn Bioengineering Department presents several awards to students. In addition to the Senior Design Awards, which will be featured over the course of the month, students were awarded for their service, originality, leadership, and scholarship.

The Hugo Otto Wolf Memorial Prize, endowed more than a century ago by the Philadelphia architect Otto Wolf, in memory of his son, was given to Margaret Nolan and Ingrid Lan. The Herman P. Schwan Award, named for a former faculty member in Bioengineering, was given to Elizabeth Kobe and Lucy Chai.

The Albert Giandomenico Award, presented to four students who “reflect several traits that include teamwork, leadership, creativity, and knowledge applied to discovery-based learning in the laboratory,” was given to Justin Averback, Jake Budlow, Justin Morena, and Young Shin.

In addition, Sushmitha Yarrabothula received the Bioengineering Student Leadership Award and four students — Hayley Williamson, Amey Vrudhula, Jane Shmushkis, and Ikshita Singh, won the Penn Engineering Exceptional Service Award.

Finally, the Biomedical Applied Science Senior Project Award, presented annually to the students who have “best demonstrated originality and creativity in the integration of knowledge,” was awarded to Derek Yee and Andrea Simi.

“These awards recognize many aspects of our students: their high academic achievement,  exceptional collaborative spirit, and leadership abilities,” said BE department chair David Meaney. “However, these traits are not limited to the only these students. Every single one of our undergraduates at Penn pushes themselves well beyond the classroom and into the community to make a unique difference.”

Hey, it’s Hey Day! Penn Juniors Become Seniors

Since 1916, University of Pennsylvania undergraduates have celebrated their last class day as juniors to mark Hey Day. While initially conceived as something solemn and rather formal, today it is an opportunity for students to get decked out in red T-shirts and novelty straw hats and bamboo canes (fashions from 1916) and celebrate.

This year, Hey Day was on April 27, and it was no exception to previous years. Several of our rising seniors were celebrating with everyone on College Green.

Hey Day for Penn Juniors
Penn BE students celebrating Hey Day

In addition to the gathering of students to be “officially” be made seniors by University President Amy Gutmann (see video here) and a passing of the gavel to next year’s junior class president, some students dropped in on their favorite teachers and staff members to say hello.

Sevile on Hey Day
BE Lab director Sevile Mannickarottu with Penn juniors

Cockroaches Give Undergrads a Leg Up in Designing Biomechatronic Prostheses

Penn Bioengineering students in Biomechantronic Lab
Biomechatronic lab students at Penn

When ABC premiered The Six Million Dollar Man more than 40 years ago, the idea of replacing or augmenting human limbs with fully functional biomechanical/biomechatronic versions probably seemed a distant possibility. In fact, the concept had already been in development for decades, but research in this area is only now coming to fruition. Three years ago, researchers in Chicago reported in the New England Journal of Medicine that they had fitted a 31-year-old amputee with a robotic leg that the patient could control with electromyographic, or EMG, signals from salvaged nerves.

Reflecting these developments, undergraduate students in the Department of Bioengineering (BE) have spent the last few weeks developing their own prosthetic devices, although both the mechanics and the “patient” are a bit cruder. Over the course of five lab sessions, these students are creating an “HCMI” — a human-cockroach machine interface that can translate an individual’s own nerve signals into ones that can control a cockroach leg.
The students performing these experiments are enrolled the first of two lab courses that BE students take as juniors. In the George H. Stephenson Foundation Undergraduate Bioengineering Laboratory, the students spend the first few sessions familiarizing themselves with cockroach anatomy. Each group then attaches an individual cockroach leg to a mechanical motor interface, creating a biomechatronic prosthesis, i.e., one that combines electronic, mechanical, and biological systems.

This part of the experiment was considered successful when the students were able to write the letters “BE” with the cockroach leg, using signals generated by computer. This is a more difficult task than it might seem, both because each cockroach leg responds at slightly different frequency-voltage ranges.

Why a cockroach leg?

“They’re easily attainable and easy to deal with,” says Sevile Mannickarottu, who is director of the Stephenson lab. “They’re also relatively large, which makes accessing their legs easy.”

The cockroach’s nervous system is also much simpler than those of birds or mammals, thus simplifying the process of creating the HCMI.

Once the students can write with the biomechantronic device, the final step of the experiment begins. Using human input, students are required to combine two devices to move the prosthetic. One of the devices is an EMG electrode; the other device is up to the student, and it can be a microphone, a motion sensor, or a range of other devices. Working directly with EMG signals is a challenge according to Mannickarottu, who described it as “incredibly noisy and difficult to interpret into meaningful data.”

After choosing their human input device, students send the signals from the device to a computer, which then converts the signal into an EMG signal, which is sent back out to the prosthetic leg. The students tried several different approaches to get the leg to move, including a musical keyboard, a force sensor, and a flex sensor. One group chose to use a Myo armband, a gesture recognition device produced by Thalmic Labs that is commonly used for video games.

With human prostheses and brain-machine interfaces rapidly advancing, overcoming a bit of entomophobia was a worthwhile endeavor for these undergrads.