We would like to congratulate Penn Bioengineering Senior Design team MeVR on winning a Berkman Prize. MeVR consists of current BE seniors Nicole Chiou, Gabriel DeSantis, Ben Habermeyer, and Vera Lee. Awarded by the Penn Engineering Entrepreneurship Program, the Berkman Opportunity Fund provides grants to support students with innovative ideas that might turn into products and companies.
Bioengineering Seniors Ben Habermeyer (top left), Nicole Chiou (top right), Gabriel DeSantis (bottom right), and Vera Lee (bottom left)
MeVR is a bioresponsive virtual reality platform for administering biofeedback therapy. Biofeedback is the process of gaining greater awareness of involuntary physiological functions using sensors that provide information on the activity of those bodily systems, with the goal of gaining voluntary control over functions such as heart rate, muscle tension, and pain perception. This therapy is used to treat a variety of conditions such as chronic pain, stress, anxiety, and PTSD. These treatments cost on the order of hundreds to thousands of dollars, require the presence of a therapist to set up and deliver the therapy session, and are generally not interactive or immersive. MeVR is a platform to reduce these limitations of biofeedback therapy through an individualized, immersive, and portable device which guides users through biofeedback therapy using wearable sensors and a virtual reality environment which responds in real-time to biological feedback from the user’s body.
NB: Penn Bioengineering would like to congratulate one of its current Senior Design teams (Alec Bayliff, Bram Bruno, Justin Swirbul, and Vishal Then) which took home the $500 Pioneer Award at this year’s Rothberg Catalyzer competition this past weekend! Keep reading for more information on the competition, awards, and winners.
Penn Health-Tech’s Rothberg Catalyzer is a two-day makerthon that challenges interdisciplinary student teams to prototype and pitch medical devices that aim to address an unmet clinical need.
The Catalyzer’s third competition was held last weekend and was won by MAR Designs, a team of Mechanical Engineering and Applied Mechanics graduate students: Rebecca Li, Ariella Mansfield and Michael Sobrepera.
MAR Designs took home the top prize of $10,000 for their project, an orthotic device that children with cerebral palsy can more comfortably wear as they sleep.
According to the team’s presentation, existing wrist orthoses “improve function and treat/prevent spasticity. However, patients report that these devices are uncomfortable which leads to lack of compliance and may also prevent patient’s eligibility for surgeries.” MAR Designs’ device initially allows full range of motion, but gradually straightens the wrist as the child is falling asleep.
In second place was Splash Throne. Team members Greg Chen, Nik Evitt, Jake Crawford and Meghan Lockwood proposed a toilet safety frame intended for elderly users. Embedded sensors track basic health information, like weight and heart-rate, as part of a preventative health routine.
Integrated Product Design students Jonah Arheim, Laura Ceccacci, Julia Lin and Alex Wan took third place with ONESCOPE, an untethered, hands-free laproscope designed to make minimally-invasive surgeries faster and safer.
Finally, SchistoSpot took home the Catalyzer’s Pioneer Award. Bioengineering and Computer and Information Science seniors Alec Bayliff, Bram Bruno, Justin Swirbul and Vishal Then designed a low-cost microscopy system that can aid in the diagnosis of the parasitic disease schistosomiasis by detecting eggs in urine samples, eliminating the need for a hospital visit.
The event was made possible by a three-year donation by scientist and entrepreneur Jonathan Rothberg, with the intent of inspiring the next generation of healthcare innovators.
Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering at the University of Pennsylvania, has received a Young Investigator Award from the Chinese Association for Biomaterials.
According to the Chinese Association for Biomaterials, “The CAB Young/Mid-Career Investigator Awards recognize the individuals who have successfully demonstrated significant achievements in the field of biomaterials research.”
The Chinese Association for Biomaterials was founded in 2015 at the Society for Biomaterials Annual Meeting. It is a non-profit professional organization that aims to facilitate exchange of research ideas and to promote collaboration among scientists in the fields of biomaterials research.
Mitchell joined the Department of Bioengineering at Penn in 2018 as Skirkanich Assistant Professor of Innovation. Previously, he was an NIH Ruth L. Kirschstein Postdoctoral Fellow with Institute Professor Robert Langer at the Koch Institute for Integrative Cancer Research at MIT. His research interests include biomaterials, drug delivery, and cellular and molecular bioengineering for applications in cancer research, immunotherapy, and gene therapy. Since joining Penn in 2018, Mitchell has received the NIH Director’s New Innovator Award, the Burroughs Wellcome Fund Career Award at the Scientific Interface, a Rising Star Award from the Biomedical Engineering Society, and the T. Nagai Award from the Controlled Release Society.
We would like to congratulate Paul Ducheyne, Ph.D., a Professor in the Bioengineering Department and a Professor of Orthopaedic Surgery Research at Penn, on being selected for the International Award by the European Society for Biomaterials (ESB). The International Award is one of the ESB’s highest honors, recognizing scientists who have spent the majority of their careers outside of Europe. They are internationally recognized, have a high scientific profile, and have made major contributions to the field of biomaterials. Those nominated for the award typically also have had strong collaborations with the scientific community in Europe throughout their careers.
Beyond being a professor at Penn, Ducheyne is also the founder of XeroThera, a spin-out from Penn that develops novel concepts for tissue engineering and drug delivery based on his group’s twenty years of fundamental studies of sol gel-processed, nanoporous, oxide-based materials. XeroThera’s first product formulations focus on prophylaxis and treatment of surgical infections. A pipeline is being developed building from his group’s breakthrough data that demonstrate the utility of sol-gel synthesized silica-based nanoporous materials for therapeutic use. These materials may well represent a next generation of agents for delivery of drugs, including antibiotics, analgesics, and osteogenic and anti-inflammatory molecules.
In being selected for the International Award, Ducheyne joins only five previous recipients of it so far, a group of scientists that represents those at the top of the field in biomaterials worldwide. Ducheyne will give a presentation and award lecture for the ESB at its next annual meeting this September in Dresden, Germany. Read more about the ESB’s awards here and see the full list of 2019 awardees here.
The NAE describes the Frontiers of Engineering program as one that “brings together outstanding early-career engineers from industry, academia, and government to discuss pioneering technical work and leading-edge research in various engineering fields and industry sectors. The goal is to facilitate interactions and exchange of techniques and approaches across fields and facilitate networking among the next generation of engineering leaders.”
Bassett and Tsourkas fit the grant’s description, as their proposed research requires them to combine their different areas of expertise to push the state of the art in engineering. The pair plans to engineer a new class of nanoparticles that can sense and differentially react to particular chemicals in their biochemical environment. This new class of nanoparticles could allow scientists to better study cellular processes and could eventually have important applications in medicine, potentially allowing for more personalized diagnoses and targeted treatment of disease.
To design and create this type of nanoparticle is no small task. The research demands Bassett’s background in engineering quantum-mechanical systems for use as environmental sensors, and Tsourkas’ ability to apply these properties to nanoscale “theranostic” agents, which are designed to target treatments based on a patient’s specific diagnostic test results.
By combining forces, Bassett and Tsourkas hope to introduce a new nanoparticle tool into their fields and to connect even more people in their different areas to promote future interdisciplinary work.
David Issadore (center) was announced as the awardee of the JPOD @ Philadelphia QuickFire Challenge by Katherine Merton (right), head of JLABS New York City, Boston, and Philadelphia, at last week’s BIO 2019 International convention. (Photo: Johnson & Johnson Innovation)
Chip Diagnostics is a Philadelphia-based device company founded in 2016 based on research from the lab of David Issadore, Assistant Professor of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science. The startup combines microelectronics, microfluidics, and nanomaterials with the aim to better diagnose cancer. The company is developing technologies and digital assays for minimally-invasive early cancer detection and screening that can be done using mobile devices.
There has been a long interest in diagnosing cancer using blood tests by looking for proteins, cells, or DNA molecules shed by tumors, but these tests have not worked well for many cancers since the molecules shed tend to be either nonspecific or very rare.
Issadore’s group aims to target different particles called exosomes: Tiny particles shed by cells that contain similar proteins and RNA as the parent cancer cell. The problem, explains Issadore, is that because of the small size of the exosomes, conventional methods such as microscopy and flow cytometry wouldn’t work. “As an engineering lab, we saw an opportunity to build devices on a nanoscale that could specifically sort the cancer exosomes versus the background exosomes of other cells,” he explains.
After Issadore was approached by the IP group at PCI Ventures in the early stages of their research, Chip Diagnostics has since made huge strides as a company. Now, as the awardee of the JPOD @ Philadelphia QuickFire Challenge, Chip Diagnostics will receive $30,000 in grant funding to further develop the first-in-class, ultra-high-definition exosomal-based cancer diagnostic. The award also includes one year of residency at Pennovation Works as well as access to educational programs and mentoring provided by Johnson & Johnson Family of Companies global network of experts.
They are among 496 recipients chosen this year from across the United States from out of more than 5,000 applicants. To date, 43 Penn students have received the award since Congress established the foundation in 1986 to honor the work of U.S. Sen. Barry Goldwater.
In a record year for the BE graduate program, twelve current and future students from the Department of Bioengineering were selected for the 2019 National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP). In addition, four more students were selected for honorable mention. This prestigious program recognizes and supports outstanding graduate students in NSF-supported fields. BE is thrilled to congratulate our excellent students on these well-deserved accolades! Continue reading below for a list of winning students and descriptions of their research.
Further information about the program can be found on the NSF website.
2019 NSF GRFP Recipients:
Tala Azar
Tala Azar is a PhD student in the Liu lab. During pregnancy and lactation, the maternal skeleton mobilizes to provide calcium for the developing fetus and breastfeeding, respectively. Tala’s current work seeks to isolate individual effects of pregnancy and lactation on the biology and structure of maternal bone in a rat and mouse model, which is important for understanding the mechanisms behind postmenopausal osteoporosis development.
Sarah Cai
Shuting (Sarah) Cai is a current Bioengineering senior (BSE ’19). She previously worked in Dr. Lloyd Miller’s Dermatology and Immunology Lab at Hopkins during the summer of her freshman year, and she has since been working in Dr. Andrew Tsourkas’s lab here at Penn on various projects involving development of nanoparticles for multimodal imaging and cancer theranostics.
Brandon Hayes
Brandon Hayes is a PhD student in the Discher lab. He is currently working on manipulating the macrophage immune checkpoint to exploit the mechanisms of phagocytosis for immunoengineering. The goal of this manipulation is to develop a new cell therapy and engineer new gene therapy and protein delivery approaches to target both immune cells and tumors.
Travis Kotzur
Travis Kotzur is a PhD student in the Winkelstein lab. His project revolves around better understanding the mechanisms of neuronally transduced pain from an injury within his lab’s models of the spine and the ligaments within.
Victoria Muir
Victoria Muir is a PhD student in the Burdick lab. She is studying injectable hyaluronic acid hydrogels for musculoskeletal tissue regeneration and repair.
Margaret Schroeder
Margaret Schroeder graduated with a BSE in 2018 and is currently completing her MSE, both in BE. She works in the Meaney lab. She studies astrocytic modulation of mesoscale neural populations in vitro, in the context of traumatic brain injury. She images the calcium activity of neurons and astrocytes to examine how astrocytes affect population response to single-cell mechanical injury.
Olivia Teter
Olivia Teter is a current Bioengineering senior (BSE ’19). She works in the Meaney lab which focuses on traumatic brain injury. Olivia’s work has been dedicated to understanding how injury propagates in neuronal networks. She uses a combination of in vitro experiments and computational analyzes to identify and evaluate possible mechanisms describing how the neuronal network changes after injury.
Tanniel Winner graduated with her BSE from Penn BE in the fall of 2015 and is now a PhD candidate in the Neuromechanics Lab at Georgia Tech and Emory University. She is working on machine learning models to classify and predict gait cycle states.
Honorable Mentions:
Margaret Billingsley – PhD student in the Mitchell lab
Dennis Andrew Huang – BSE 2018, now at the University of Texas at Austin
Brianna Marie Karpowicz – current BE senior (BSE ’19) and MSE student in Data Science
In addition to her honorable mention, Margaret Billingsley was also awarded the Tau Beta Pi Fellowship, a selective program which provides a year of financial support for graduate study.
Finally, several honorees at other institutions will be joining our department in the fall of 2019. We congratulate them as well and look forward to welcoming them to Penn:
Bioengineering student Oladunni Alomaja, who goes by the nickname Ola, moved to the United States six years ago.
Princess Aghayere, Summer Kollie, and Oladunni Alomaja met for the first time before they even started college, at Penn’s Pre-Freshman Program. Drawn together by their common ties to West Africa, they became fast friends and, eventually, roommates. Kollie is originally from Liberia, and Aghayere and Alomaja were born in Nigeria.
Although all three moved to the United States as children or teenagers, each felt compelled to give back to Africa. As winners of one of the 2019 President’s Engagement Prizes (PEP), they will.
Their project, Rebound Liberia, aims to give young women a platform to develop their voices and, ultimately, to position them to create a new, more positive narrative about the country. It involves building a basketball court in Monrovia, the capital, and pairing it with literacy programs and a resource center.
The initial goal is to serve about 60 girls between the ages of 8 and 18, to complement what the young women are learning in school, and to build on those skills during the summer break. The PEP gives their project a $100,000 award, as well as a $50,000 living stiped for each of them.
All three women said the ability to begin their post-Penn lives giving back is hugely significant.
“We have always had that passion, that drive to want to work with youth in West Africa, to give back and just kind of help the youth in the way we have been helped along the way of our journey,” Kollie says.
“In Africa, West Africa especially, it’s very patriarchal,” says Alomaja, who goes by the nickname Ola. “We’re giving girls a voice. We’re empowering them, teaching them leadership skills. And we’re teaching them so many things that their society might have taken away from them or has not given them the opportunity to learn.
“For me, being involved in this project means I will be able to see that through and to have a close, interactive relationship with these girls for a long time, to help reach their own goals. I want to help them realize they’re more than what their society tells them they can be.”
Aghayere, a standout forward on Penn’s women’s basketball team, began playing basketball not long after she and her family moved to Virginia when she was 8. She’s driven by research showing the power of sports to teach leadership, and she can’t wait to expand the sport’s reach in Liberia.
“Basketball is definitely on the rise in Liberia. If we can build this program to a world-class program and really sort of help redefine Liberia in a new way, it will help. We’ve talked a lot about the negative narratives about Liberia,” Aghayere says. “We want to see this not only be self-sustainable but be something that people from all across West Africa come to and know Liberia for.”
The genesis of the project lies in Penn Engineering’s global and local-service program. Aghayere and Kollie had both been involved in summer projects in Africa and in 2018 won a grant from the Davis Projects for Peace Program.
Kollie and Aghayere also put together weekly workshops for the girls, discussing everything from sexual and reproductive health to goal-setting. They took the girls to Monrovia’s Coca-Cola plant and the nation’s Senate, two places where women are scarce.
After that success, the duo wanted to reach higher and began thinking about entering the annual contest for the PEP. Alomaja suggested adding in the literacy component to round out the program.
The trio approached Ocek Eke, the director of global and local-service learning programs in the School of Engineering and Applied Science. He knew all three women, since Alomaja is majoring in bioengineering and Kollie and Aghayere had worked on programs with him, and he agreed to be their faculty mentor for the project.
BE Senior Malika Shukurova (left) with her partner Katherine Sizov, Strella Biotechnology
Bringing home a bad apple or two from the grocery store might not seem like a huge deal to the average consumer. But for producers and sellers of fresh fruits and vegetables, the staggering 40% of food that goes bad before it even reaches a store means mounds of wasted food and nearly $1 trillion in lost profits.
Now, thanks to a 2019 President’s Innovation Prize (PIP) award, seniors Katherine Sizov of Alexandria, Virginia, and Malika Shukurova of Samarkand, Uzbekistan, plan to address the issue and optimize the produce supply chain. The prize will help them grow their novel biosensing technology startup company Strella Biotechnology.
Sizov, who is majoring in molecular biology, likes to ask everyone the same question when talking about Strella: “How old do you think an apple in a grocery store is?” As it turns out, an apple from a store may have been in storage anywhere from a couple months to up to more than a year. “That’s one fact that you don’t really consider when you go into a store because you’re so used to seeing fresh fruit,” she says.
The idea for Strella came to life when Sizov, who was previously doing undergraduate research on neurodegenerative disorders, found herself reading papers outside of her main area of study and chatting with Shukurova about what she learned about food waste. The two friends had met during freshmen year through the Penn Russian Club.
That 40% of all fresh produce going to waste is what motivated Sizov. “I thought it was the most ridiculous number in the world,” she says. “This clearly is a problem that could be solved, and, since ag is a bio space, I thought we could use the technical knowledge that we have to solve the problem.”
Shukurova, a bioengineering major, quickly became interested in seeking a solution with Sizov. “At that time I was becoming increasingly interested in the technical aspects [of the problem], and more focused towards building a solution by sensing,” she says. Their complementary areas of technical expertise, and two years of friendship, led to a collaboration.
They soon found a potential approach: Ripening fruits release ethylene gas, and the amount of the gas correlates with a fruit’s ripeness. The challenge, however, is that man-made compounds do not bind ethylene with much specificity, so it’s a difficult gas to measure.
Strella’s solution? “Hack the fruit,” says Sizov, explaining that fruits can already measure ethylene themselves. Placing a ripe banana next to an unripe banana, for example, causes the unripe fruit to ripen more quickly. “Why reinvent the wheel? Let’s use what a fruit uses to sense ethylene,” she says.
After Sizov “hacked” the fruit and had a potential biosensor in hand, Shukurova’s experience and technical knowledge in bioengineering gave her knowledge on both the electronic and biological aspects of the problem. Their patent-pending sensor is now a “leading ripeness indicator” that Strella can monitor on a constant basis.
But bringing their biosensor to market means overcoming technical and biological challenges, including biosensor stability and powering the electrical components that collect data. Sizov and Shukurova put together a team of people with complementary knowledge, including Zuyang Liu, an electrical engineering master’s student; Reggie Lamaute, an undergraduate studying chemistry and nanotechnology; and Jay Jordan, who has previous experience in sales and market development in agriculture.
Mentorship was also crucial for the success of their startup, with both naming Sevile Mannickarottu and their PIP mentor, Jeffrey Babin, as instrumental resources. Babin, who first met Sizov when she took his engineering entrepreneurship lab and who later served as her Wharton accelerator program advisor, says that Sizov was able to take skills she gained in the classroom and directly apply them in business scenarios. “She’s fearless in terms of picking up the phone and talking to strangers, gauging the market place, and taking on the tough issues in starting a company,” he says.