Strella Biotechnology tackles food waste by ‘hacking the fruit’

Last spring, we congratulated Penn Bioengineering graduating BE senior Malika Shukurova (BSE ’19) and her co-founder Katherine Sizov (Biology ’19) on their President’s Innovation Prize for their start-up Strella Biotechnology. Katherine began the work for what became Strella as a sophomore in the Penn Bioengineering George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace. For more info on their company, check out the article and video below.

by Eric K. Brockmeier

On the second floor of the Pennovation Center, Strella Biotechnology is hard at work turning their student-led startup into a full-fledged company that’s ready to make a major impact in the agricultural sector.

May graduates Katherine Sizov and Malika Shukurova, respectively the CEO and head of R&D at Strella, share a 2019 President’s Innovation Prize, which includes $100,000 of financial support, a $50,000 living stipend for both awardees, and a year of dedicated co-working and lab space at the Pennovation Center. The alumnae and their company are now poised to take on the challenge of $1 trillion worth of food waste.

Strella’s biosensors are designed to give packers real-time data on how ripe their fruits are while being stored between harvesting and selling. Using bio-inspired sensors that measure the ethylene gas produced by fruits as they ripen, Strella successfully “hacked the fruit” to create their patent-pending biosensors. Now, only six months after graduation, Strella has six paying customers and is aiming for $100,000 in sales by the end of the season.

Beyond the work needed to deploy their first paid product, Strella also has a clear view of what needs to be done for future progress of the company. This means running experiments in the lab to refine their current sensors while conducting other experiments that will help the company be able to monitor other types of fresh foods. It’s a job that Shukurova says involves a lot of multitasking and requires an “all-hands” approach to problem solving.

“We set up experiments that run for several days, and during that period we work on different tasks. I prepare for the next set of experiments, Jacob [Jordan] and Katherine travel to our customers to deploy sensors, and Zuyang [Liu]]works on IoT [Internet of Things]. At the end of the day we all come together to discuss results and future plans,” says Shukurova about their company’s work flow.

Continue reading at Penn Today.

Rebound Liberia Kicks Into a New Phase

Last spring, we congratulated Penn Bioengineering graduating senior Oladunni Alomaja (BSE ’19) and her partners at Rebound Liberia on their President’s Engagement Prize. Check out the article and video below on their exciting project.

By Brandon Baker

Fueled by the encouragement and support they received this spring and summer, the three Penn alumni behind Rebound Liberia are now laser-focused on carrying their mission of promoting education and empowerment straight to the basket.

The Rebound Liberia team is led by Princess Aghayere, Oladunni Alomaja, and Summer Kollie, all May Penn graduates who received the President’s Engagement Prize — a $100,000 project prize and $50,000 living stipend per team member, awarded for post-graduation projects that make a positive, lasting difference in the world. The trio, each of whom has connections to West Africa and strives to give back, proposed an NGO that would bridge the literacy gap in post-conflict Liberia between male and female youth through workshops and a basketball program for women.

On Sept. 4, after months of preparation, the team relocated to Monrovia, Liberia, and is settling in.

“I think there’s some cultural shock,” says Aghayere, musing about the adjustment. “But Penn is a great place to travel and a lot of us took advantage of opportunities to travel. I’m not surprised, because this is not my first time on the continent, but there are things unique about Liberia. Getting used to the accents, the weather, the currency — but it’s fun.”

Aghayere and Alomaja were born in Nigeria, while Kollie is from Liberia.

Their days so far, they explain, have been consistently jam-packed with meetings. At present, they’re planning an inter-school basketball tournament to introduce their program to Liberia; in recent weeks, they’ve made connections with school administrators, found their footing in the community, and worked through the logistics of organizing a tournament — which, they note, they had some practice with in 2018, creating a summer basketball clinic in Monrovia, Liberia, for girls that was hosted twice a week.

The upcoming tournament, which will include 120 female players on Nov. 22–24, represents a first step toward their larger intention to build a basketball court and program, and marry that with literacy resources. They aim to serve approximately 60 girls in their program.

“We didn’t think it would be wise to move in September and not have an event until the next June or so, so we thought [of] the tournament,” says Aghayere, explaining the origins of the tournament. “At first, we were thinking we’d have a team and foster the game amongst girls here in Monrovia, and we wanted to include a lot more girls and create this sort of league of our own while introducing ourselves as this new social enterprise in Liberia. We thought a tournament would be a launch of Rebound Liberia and introduce us to the community here.”

Continue reading at Penn Today.

Bioengineering Round-Up (December 2019)

by Sophie Burkholder

Positive results in first-in-U.S. trial of CRISPR-edited immune cells

3D render of the CRISPR-Cas9 genome editing system

Genetically editing a cancer patient’s immune cells using CRISPR/Cas9 technology, then infusing those cells back into the patient appears safe and feasible based on early data from the first-ever clinical trial to test the approach in humans in the United States. Researchers from the Abramson Cancer Center have infused three participants in the trial thus far—two with multiple myeloma and one with sarcoma—and have observed the edited T cells expand and bind to their tumor target with no serious side effects related to the investigational approach. Penn is conducting the ongoing study in cooperation with the Parker Institute for Cancer Immunotherapy and Tmunity Therapeutics.

“This trial is primarily concerned with three questions: Can we edit T cells in this specific way? Are the resulting T cells functional? And are these cells safe to infuse into a patient? This early data suggests that the answer to all three questions may be yes,” says the study’s principal investigator Edward A. Stadtmauer, section chief of Hematologic Malignancies at Penn. Stadtmauer will present the findings next month at the 61st American Society of Hematology Annual Meeting and Exposition.

Read the rest of the story on Penn Today.

Tulane researchers join NIH HEAL initiative for research into opioid crisis

A Tulane University professor and researcher of biomedical engineering will join fellow researchers from over 40 other institutions in the National Institute of Health’s Help to End Addiction Long-Term (HEAL) Initiative. Of the $945 million that make up the project, Michael J. Moore, Ph.D. will receive a share of $1.2 million to advance research in modeling human pain through computer chips, with the help of fellow Tulane researchers Jeffrey Tasker, Ph.D., and James Zadina, Ph.D., each with backgrounds in neuroscience.

Because of the opioid epidemic sweeping the nation, Moore notes that there’s a rapid search going on to develop non-addictive painkiller options. However, he also sees a gap in adequate models to test those new drugs before human clinical trials are allowed to take place. Here is where he hopes to step in and bring some innovation to the field, by integrating living human cells into a computer chip for modeling pain mechanisms. Through his research, Moore wants to better understand not only how some drugs can induce pain, but also how patients can grow tolerant to some drugs over time. If successful, Moore’s work will lead to a more rapid and less expensive screening option for experimental drug advancements.

New machine learning-assisted microscope yields improved diagnostics

Researchers at Duke University recently developed a microscope that uses machine learning to adapt its lighting angles, colors, and patterns for diagnostic tests as needed. Most microscopes have lighting tailored to human vision, with an equal distribution of light that’s optimized for human eyes. But by prioritizing the computer’s vision in this new microscope, researchers enable it to see aspects of samples that humans simply can’t, allowing for a more accurate and efficient diagnostic approach.

Led by Roarke W. Horstmeyer, Ph.D., the computer-assisted microscope will diffuse light through a bowl-shaped source, allowing for a much wider range of illumination angles than traditional microscopes. With the help of convolutional neural networks — a special kind of machine learning algorithm — Horstmeyer and his team were able to tailor the microscope to accurately diagnose malaria in red blood cell samples. Where human physicians typically perform similar diagnostics with a rate of 75 percent accuracy, this new microscope can do the same work with 90 percent accuracy, making the diagnostic process for many diseases much more efficient.

Case Western Reserve University researchers create first-ever holographic map of brain

A Case Western Reserve University team of researchers recently spearheaded a project in creating an interactive holographic mapping system of the human brain. The design, which is believed to be the first of its kind, involves the use of the Microsoft HoloLens mixed reality platform. Lead researcher Cameron McIntyre, Ph.D., sees this mapping system as a better way of creating holographic navigational routes for deep brain stimulation. Recent beta tests with the map by clinicians give McIntyre hope that the holographic representation will help them better understand some of the uncertainties behind targeted brain surgeries.

More than merely providing a useful tool, McIntyre’s project also brings together decades’ worth of neurological data that has not yet been seriously studied together in one system. The three-dimensional atlas, called “HoloDBS” by his lab, provides a way of finally seeing the way all of existing neuro-anatomical data relates to each other, allowing clinicians who use the tool to better understand the brain on both an analytical and visual basis.

Implantable cancer traps reduce biopsy incidence and improve diagnostic

Biopsies are one of the most common procedures used for cancer diagnostics, involving a painful and invasive surgery. Researchers at the University of Michigan are trying to change that. Lonnie Shea, Ph.D., a professor of biomedical engineering at the university, worked with his lab to develop implants with the ability to attract any cancer cells within the body. The implant can be inserted through a scaffold placed under the patient’s skin, making it a more ideal option than biopsy for inaccessible organs like lungs.

The lab’s latest work on the project, published in Cancer Research, details its ability to capture metastatic breast cancer cells in vivo. Instead of needing to take biopsies from areas deeper within the body, the implant allows for a much simpler surgical procedure, as biopsies can be taken from the implant itself. Beyond its initial diagnostic advantages, the implant also has the ability to attract immune cells with tumor cells. By studying both types of cells, the implant can give information about the current state of cancer in a patient’s body and about how it might progress. Finally, by attracting tumor and immune cells, the implant has the ability to draw them away from the area of concern, acting in some ways as a treatment for cancer itself.

People and Places

Cesar de la Fuente-Nunez, PhD

The Philadelphia Inquirer recently published an article detailing the research of Penn’s Presidential Assistant Professor in Psychiatry, Microbiology, and Bioengineering, Cesar de la Fuente, Ph.D. In response to a growing level of worldwide deaths due to antibiotic-resistant bacteria, de la Fuente and his lab use synthetic biology, computation, and artificial intelligence to test hundreds of millions of variations in bacteria-killing proteins in the same experiment. Through his research, de la Fuente opens the door to new ways of finding and testing future antibiotics that might be the only viable options in a world with an increasing level of drug-resistant bacteria

Emily Eastburn, a Ph.D. candidate in Bioengineering at Penn and a member of the Boerckel lab of the McKay Orthopaedic Research Laboratory, recently won the Ashton fellowship. The Ashton fellowship is an award for postdoctoral students in any field of engineering that are under the age of 25, third-generation American citizens, and residents of either Pennsylvania or New Jersey. A new member of the Boerckel lab, having joined earlier this fall, Eastburn will have the opportunity to conduct research throughout her Ph.D. program in the developmental mechanobiology and regeneration that the Boerckel lab focuses on.

BE Senior Design Team Wins Berkman Prize

Senior Design Group MeVR

We would like to congratulate Penn Bioengineering Senior Design team MeVR on winning a Berkman Prize. MeVR consists of current BE seniors Nicole Chiou, Gabriel DeSantis, Ben Habermeyer, and Vera Lee. Awarded by the Penn Engineering Entrepreneurship Program, the Berkman Opportunity Fund provides grants to support students with innovative ideas that might turn into products and companies.

Bioengineering Seniors Ben Habermeyer (top left), Nicole Chiou (top right), Gabriel DeSantis (bottom right), and Vera Lee (bottom left)

MeVR is a bioresponsive virtual reality platform for administering biofeedback therapy. Biofeedback is the process of gaining greater awareness of involuntary physiological functions using sensors that provide information on the activity of those bodily systems, with the goal of gaining voluntary control over functions such as heart rate, muscle tension, and pain perception. This therapy is used to treat a variety of conditions such as chronic pain, stress, anxiety, and PTSD. These treatments cost on the order of hundreds to thousands of dollars, require the presence of a therapist to set up and deliver the therapy session, and are generally not interactive or immersive. MeVR is a platform to reduce these limitations of biofeedback therapy through an individualized, immersive, and portable device which guides users through biofeedback therapy using wearable sensors and a virtual reality environment which responds in real-time to biological feedback from the user’s body.

As part of the two-semester Senior Design course (BE 495 & BE 496), MeVR and the rest of the Bioengineering B.S.E. seniors will continue to develop their projects throughout the remainder of the academic year in George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, culminating in their final presentations and the annual SEAS Senior Design Project Competition at the end of the spring 2020 semester.

 

Students’ Innovative Orthotic Device Wins Rothberg Catalyzer

NB: Penn Bioengineering would like to congratulate one of its current Senior Design teams (Alec Bayliff, Bram Bruno, Justin Swirbul, and Vishal Then) which took home the $500 Pioneer Award at this year’s Rothberg Catalyzer competition this past weekend! Keep reading for more information on the competition, awards, and winners.

Penn Health-Tech’s Rothberg Catalyzer is a two-day makerthon that challenges interdisciplinary student teams to prototype and pitch medical devices that aim to address an unmet clinical need.

The Catalyzer’s third competition was held last weekend and was won by MAR Designs, a team of Mechanical Engineering and Applied Mechanics graduate students: Rebecca Li, Ariella Mansfield and Michael Sobrepera.

MAR Designs took home the top prize of $10,000 for their project, an orthotic device that children with cerebral palsy can more comfortably wear as they sleep.

According to the team’s presentation, existing wrist orthoses “improve function and treat/prevent spasticity. However, patients report that these devices are uncomfortable which leads to lack of compliance and may also prevent patient’s eligibility for surgeries.” MAR Designs’ device initially allows full range of motion, but gradually straightens the wrist as the child is falling asleep.

In second place was Splash Throne. Team members Greg Chen, Nik Evitt, Jake Crawford and Meghan Lockwood proposed a toilet safety frame intended for elderly users. Embedded sensors track basic health information, like weight and heart-rate, as part of a preventative health routine.

Integrated Product Design students Jonah Arheim, Laura Ceccacci, Julia Lin and Alex Wan took third place with ONESCOPE, an untethered, hands-free laproscope designed to make minimally-invasive surgeries faster and safer.

Finally, SchistoSpot took home the Catalyzer’s Pioneer Award. Bioengineering and Computer and Information Science seniors Alec Bayliff, Bram Bruno, Justin Swirbul and Vishal Then designed a low-cost microscopy system that can aid in the diagnosis of the parasitic disease schistosomiasis by detecting eggs in urine samples, eliminating the need for a hospital visit.

The event was made possible by a three-year donation by scientist and entrepreneur Jonathan Rothberg, with the intent of inspiring the next generation of healthcare innovators.

Originally posted on the Penn Engineering Medium blog.

Michael Mitchell Receives Chinese Association for Biomaterials Young Investigator Award

Michael Mitchell, Ph.D.

Michael Mitchell, Skirkanich Assistant Professor of Innovation in the Department of Bioengineering at the University of Pennsylvania, has received a Young Investigator Award from the Chinese Association for Biomaterials.

Mitchell received the Young Investigator Award at the Biomaterials Science Excellence and Technology Translation Workshop in collaboration with the Society for Biomaterials at the 2019 Annual Meeting in Seattle, Washington.

According to the Chinese Association for Biomaterials, “The CAB Young/Mid-Career Investigator Awards recognize the individuals who have successfully demonstrated significant achievements in the field of biomaterials research.”

The Chinese Association for Biomaterials was founded in 2015 at the Society for Biomaterials Annual Meeting. It is a non-profit professional organization that aims to facilitate exchange of research ideas and to promote collaboration among scientists in the fields of biomaterials research.

Mitchell joined the Department of Bioengineering at Penn in 2018 as Skirkanich Assistant Professor of Innovation. Previously, he was an NIH Ruth L. Kirschstein Postdoctoral Fellow with Institute Professor Robert Langer at the Koch Institute for Integrative Cancer Research at MIT. His research interests include biomaterials, drug delivery, and cellular and molecular bioengineering for applications in cancer research, immunotherapy, and gene therapy. Since joining Penn in 2018, Mitchell has received the NIH Director’s New Innovator Award, the Burroughs Wellcome Fund Career Award at the Scientific Interface, a Rising Star Award from the Biomedical Engineering Society, and the T. Nagai Award from the Controlled Release Society.

Originally posted on the Penn Engineering Medium blog.

Penn Bioengineering Faculty Member Paul Ducheyne Receives the European Society for Biomaterials’ International Award

Ducheyne
Paul Ducheyne, Ph.D.

by Sophie Burkholder

We would like to congratulate Paul Ducheyne, Ph.D., a Professor in the Bioengineering Department and a Professor of Orthopaedic Surgery Research at Penn, on being selected for the International Award by the European Society for Biomaterials (ESB). The International Award is one of the ESB’s highest honors, recognizing scientists who have spent the majority of their careers outside of Europe. They are internationally recognized, have a high scientific profile, and have made  major contributions to the field of biomaterials. Those nominated for the award typically also have had strong collaborations with the scientific community in Europe throughout their careers.

Beyond being a professor at Penn, Ducheyne is also the founder of XeroThera, a spin-out from Penn that develops novel concepts for tissue engineering and drug delivery based on his group’s twenty years of fundamental studies of sol gel-processed, nanoporous, oxide-based materials. XeroThera’s first product formulations focus on prophylaxis and treatment of surgical infections. A pipeline is being developed building from his group’s breakthrough data   that demonstrate the utility of sol-gel synthesized silica-based nanoporous materials for therapeutic use. These materials may well represent a next generation of agents for delivery of drugs, including antibiotics, analgesics, and osteogenic and anti-inflammatory molecules.

In being selected for the International Award, Ducheyne joins only five previous recipients of it so far, a group of scientists that represents those at the top of the field in biomaterials worldwide. Ducheyne will give a presentation and award lecture for the ESB at its next annual meeting this September in Dresden, Germany. Read more about the ESB’s awards here and see the full list of 2019 awardees here.

Lee Bassett and Andrew Tsourkas Awarded Grainger Foundation Grant for Interdisciplinary Research

Lee Bassett and Andrew Tsourkas

By Lauren Salig

The National Academy of Engineering (NAE) has awarded two Penn Engineers with The Grainger Foundation Frontiers of Engineering Grant for Advancement of Interdisciplinary Research. Lee Bassett, assistant professor in the Department of Electrical and Systems Engineering, and Andrew Tsourkas, professor and undergraduate chair in the Department of Bioengineering, will be using the $30,000 award to kick-start their research collaboration.

The NAE describes the Frontiers of Engineering program as one that “brings together outstanding early-career engineers from industry, academia, and government to discuss pioneering technical work and leading-edge research in various engineering fields and industry sectors. The goal is to facilitate interactions and exchange of techniques and approaches across fields and facilitate networking among the next generation of engineering leaders.”

Bassett and Tsourkas fit the grant’s description, as their proposed research requires them to combine their different areas of expertise to push the state of the art in engineering. The pair plans to engineer a new class of nanoparticles that can sense and differentially react to particular chemicals in their biochemical environment. This new class of nanoparticles could allow scientists to better study cellular processes and could eventually have important applications in medicine, potentially allowing for more personalized diagnoses and targeted treatment of disease.

To design and create this type of nanoparticle is no small task. The research demands Bassett’s background in engineering quantum-mechanical systems for use as environmental sensors, and Tsourkas’ ability to apply these properties to nanoscale “theranostic” agents, which are designed to target treatments based on a patient’s specific diagnostic test results.

By combining forces, Bassett and Tsourkas hope to introduce a new nanoparticle tool into their fields and to connect even more people in their different areas to promote future interdisciplinary work.

Originally posted on the Penn Engineering Medium Blog.

Chip Diagnostics receives the JPOD @ Philadelphia QuickFire Challenge Award

By Erica K. Brockmeier

Chip Diagnostics is the awardee of the JPOD @ Philadelphia QuickFire Challenge sponsored by Johnson & Johnson Innovation — JLABS. The Challenge was designed to accelerate healthcare innovation and commercialization within the greater Philadelphia area.

David Issadore (center) was announced as the awardee of the JPOD @ Philadelphia QuickFire Challenge by Katherine Merton (right), head of JLABS New York City, Boston, and Philadelphia, at last week’s BIO 2019 International convention. (Photo: Johnson & Johnson Innovation)

Chip Diagnostics is a Philadelphia-based device company founded in 2016 based on research from the lab of David Issadore, Assistant Professor of Bioengineering and Electrical and Systems Engineering in the School of Engineering and Applied Science. The startup combines microelectronics, microfluidics, and nanomaterials with the aim to better diagnose cancer. The company is developing technologies and digital assays for minimally-invasive early cancer detection and screening that can be done using mobile devices.

There has been a long interest in diagnosing cancer using blood tests by looking for proteins, cells, or DNA molecules shed by tumors, but these tests have not worked well for many cancers since the molecules shed tend to be either nonspecific or very rare.

Issadore’s group aims to target different particles called exosomes: Tiny particles shed by cells that contain similar proteins and RNA as the parent cancer cell. The problem, explains Issadore, is that because of the small size of the exosomes, conventional methods such as microscopy and flow cytometry wouldn’t work. “As an engineering lab, we saw an opportunity to build devices on a nanoscale that could specifically sort the cancer exosomes versus the background exosomes of other cells,” he explains.

After Issadore was approached by the IP group at PCI Ventures in the early stages of their research, Chip Diagnostics has since made huge strides as a company. Now, as the awardee of the JPOD @ Philadelphia QuickFire Challenge, Chip Diagnostics will receive $30,000 in grant funding to further develop the first-in-class, ultra-high-definition exosomal-based cancer diagnostic. The award also includes one year of residency at Pennovation Works as well as access to educational programs and mentoring provided by Johnson & Johnson Family of Companies global network of experts.

Originally posted on the Penn Engineering Medium Blog. Continue reading at Penn Today.

BE Sophomore wins 2019 Barry Goldwater Scholarship

Chloe Cho, BSE ’21

Congratulations to BE sophomore Chloe Cho (BSE ’21), recipient of the 2019 Goldwater Scholarship!

Three juniors and one sophomore (Cho) at the University of Pennsylvania have been selected as Goldwater Scholars by the Barry Goldwater Scholarship and Excellence in Education Foundation, which provides scholarships of as much as $7,500 to undergraduate students interested in research careers in the natural sciences, math, or engineering.

They are among 496 recipients chosen this year from across the United States from out of more than 5,000 applicants. To date, 43 Penn students have received the award since Congress established the foundation in 1986 to honor the work of U.S. Sen. Barry Goldwater.

Chloe, a sophomore from Moorestown, New Jersey, majors in bioengineering in the School of Engineering and Applied Sciences. She works with Jason Mills and Jean Bennett at the Center for Advanced Retinal and Ocular Therapeutics on engineering novel treatments for retinal degenerative disorders. She intends to pursue a MD/PhD in bioengineering.

Continue reading about Penn’s Goldwater Scholars at Penn Today.