Penn Researchers Show ‘Encrypted’ Peptides Could be Wellspring of Natural Antibiotics

by Melissa Pappas

César de la Fuente, Ph.D.

While biologists and chemists race to develop new antibiotics to combat constantly mutating bacteria, predicted to lead to 10 million deaths by 2050, engineers are approaching the problem through a different lens: finding naturally occurring antibiotics in the human genome.

The billions of base pairs in the genome are essentially one long string of code that contains the instructions for making all of the molecules the body needs. The most basic of these molecules are amino acids, the building blocks for peptides, which in turn combine to form proteins. However, there is still much to learn about how — and where — a particular set of instructions are encoded.

Now, bringing a computer science approach to a life science problem, an interdisciplinary team of Penn researchers have used a carefully designed algorithm to discover a new suite of antimicrobial peptides, hiding deep within this code.

The study, published in Nature Biomedical Engineering, was led by César de la Fuente, Presidential Assistant Professor in Bioengineering, Microbiology, Psychiatry, and Chemical and Biomolecular Engineering, spanning both Penn Engineering and Penn Medicine, and his postdocs Marcelo Torres and Marcelo Melo. Collaborators Orlando Crescenzi and Eugenio Notomista of the University of Naples Federico II also contributed to this work.

“The human body is a treasure trove of information, a biological dataset. By using the right tools, we can mine for answers to some of the most challenging questions,” says de la Fuente. “We use the word ‘encrypted’ to describe the antimicrobial peptides we found because they are hidden within larger proteins that seem to have no connection to the immune system, the area where we expect to find this function.”

Read the full story in Penn Engineering Today.

Penn Bioengineering Alumna Cynthia Reinhart-King is President Elect of BMES

Dr. Cynthia Reinhart-King, Engineering, BME, Photo by Joe Howell

Penn Bioengineering alumna Cynthia Reinhart-King, Cornelius Vanderbilt Professor of Engineering and Professor of Biomedical Engineering at Vanderbilt University, was elected the next President of the Biomedical Engineering Society (BMES), the largest professional society for biomedical engineers. Her term as president-elect started at the annual BMES meeting in October 2021.

Reinhart-King graduated with her Ph.D. from Penn Bioengineering in 2006. She studied in the lab of Daniel Hammer, Alfred G. and Meta A. Ennis Professor in Bioengineering and Chemical and Biomolecular Engineering as a Whitaker Fellow and went on to complete postdoctoral training as an Individual NIH NRSA postdoctoral fellow at the University of Rochester. Prior to joining Vanderbilt, she was on the faculty of Cornell University and received tenure in the Department of Biomedical Engineering. The Reinhart-King lab at Vanderbilt “uses tissue engineering, microfabrication, novel biomaterials, model organisms, and tools from cell and molecular biology to study the effects of mechanical and chemical changes in tissues during disease progression.”

Reinhart-King gave the 2019 Grace Hopper Distinguished Lecture, sponsored by the Department of Bioengineering. This lecture series recognizes successful women in engineering and seeks to inspire students to achieve at the highest level. She is a recipient of numerous prestigious awards, including the Rita Schaffer Young Investigator Award in 2010, an NSF CAREER Award, and the Mid-Career Award in 2018 from BMES.

In a Q&A on the BMES Blog, Reinhart-King said that:

“BMES is facing many challenges, like many societies, as we deal with the hurdles associated with COVID-19 and inequities across society. We must continue to address those challenges. However, we are also in a terrific window of having robust membership, many members who are eager to get involved with the society’s activities, and a national lens on science and scientists. One of my goals will be to identify and create opportunities for our members to help build the reach of the society and its member.”

Read “Cynthia Reinhart-King is president-elect of the Biomedical Engineering Society” in Vanderbilt News.

A New Model for How the Brain Perceives Unique Odors

by Erica K. Brockmeier

Cathy and Marc Lasry Professor Vijay Balasubramanian at Penn’s BioPond.

A study published in PLOS Computational Biology describes a new model for how the olfactory system discerns unique odors. Researchers from the University of Pennsylvania found that a simplified, statistics-based model can explain how individual odors can be perceived as more or less similar from others depending on the context. This model provides a starting point for generating new hypotheses and conducting experiments that can help researchers better understand the olfactory system, a complex, crucial part of the brain.

The sense of smell, while crucial for things like taste and hazard avoidance, is not as well studied as other senses. Study co-author Vijay Balasubramanian, a theoretical physicist with an interest in how living systems process information, says that olfaction is a prime example of a complex information-processing system found in nature, as there are far more types of volatile molecules—on the scale of tens or hundreds of thousands—than there are receptor types in the nose to detect them, on the scale of tens to hundreds depending on the species.

“Every molecule can bind to many receptors, and every receptor can bind to many molecules, so you get this combinatorial mishmash, with the nose encoding smells in a way that involves many receptor types to collectively tell you what a smell is,” says Balasubramanian. “And because there are many fewer receptor types than molecular species, you basically have to compress a very high dimensional olfactory space into a much lower dimensional space of neural responses.”

Read the full story in Penn Today.

Vijay Balasubramanian is the Cathy and Marc Lasry Professor in the Department of Physics & Astronomy in the School of Arts & Sciences at the University of Pennsylvania and a member of the Penn Bioengineering Graduate Group.

This research was supported by the Simons Foundation Mathematical Modeling of Living Systems (Grant 400425) and the Swartz Foundation.

Catherine Michelutti on “Finding New Passions” with the Orion Organisation

Catherine Michelutti (SEAS/WHARTON ’23) working on her internship in her backyard with her dog

Catherine Michelutti, a junior in Bioengineering and Wharton and fellow in the Stavros Niarchos Foundation (SNF) Paideia Program, shared her virtual internship experience with the Orion Organisation, a healthcare NGO based in South Africa that provides for “the educational, training and therapeutic needs of children, youth and adults living with physical, psychosocial challenges, intellectual and neurological disabilities”:

“My internship with the Orion Organization has prompted me to reflect on my identity in terms of where my passions and future career interests lie. My previous work experiences have all been in biomedical research fields, which is something I’m passionate about and want to continue doing throughout my career. However, working with Orion has opened my eyes to the realms of interdisciplinary work that comes with operating a healthcare NGO and the joys that come with it.”

Read the full story in the Penn Abroad blog.

NSF Grant Will Support Research into Sustainable Manufacturing of 3D Solid-state Sodium-ion Batteries and Battery Workforce Training

by Melissa Pappas

The Department of Materials Science and Engineering’s Eric Detsi will lead a team of researchers, including MSE’s Eric Stach and Russell Composto, to develop more eco-friendly batteries that are based on sodium, rather than lithium.

Rechargeable lithium-ion batteries are becoming more ubiquitous, thanks to their use in emerging applications such as battery electric vehicles and grid-scale energy storage, however, these batteries are inefficiently manufactured and unsustainably sourced.

The typical battery cell consists of a separator membrane filled with liquid electrolyte, sandwiched between the negative anode and positive cathode. This design has several drawbacks, including a complex and energy-intensive manufacturing process, inefficient recycling, and increased safety risks as the liquid electrolyte is flammable and crystallization between the electrodes can lead to explosions. Finally, there are substantial geopolitical and environmental risks associated with the global supply chain for lithium-ion battery materials, such as cobalt and lithium.

The solid-state battery design addresses these issues. In solid-state batteries, the flammable liquid electrolyte is replaced by a solid electrolyte, making them safer and more energy efficient. Sodium-ion batteries address the issue of sustainable material sourcing as sodium is more abundant than lithium and cobalt, the materials used in lithium-ion batteries. Both solid-state lithium-ion batteries and sodium-ion batteries are very attractive for battery electric vehicles and grid-scale energy storage applications.

However, current solid-state battery designs also suffer from two major drawbacks: a low capacity for power storage and a resistance to charge transfer.

 To tackle the unsustainability in battery materials and the inefficiency of the current solid-state design, the National Science Foundation has awarded a team of Penn Engineers $2.7 Million in funding through its Future Manufacturing program. The team will be led by Eric Detsi, Stephenson Term Assistant Professor in the Department of Materials Science and Engineering (MSE), and will include Eric Stach, Professor in MSE and Director of the Laboratory for Research on the Structure of Matter, and Russell Composto, Howell Family Faculty Fellow and Professor in MSE with appointments in the Departments of Bioengineering and Chemical and Biomolecular Engineering.

“Our team will investigate a novel ‘Eco Manufacturing’ route to a 3D solid-state sodium-ion battery based on polymer solid-electrolytes,” says Detsi. “Our Eco Manufacturing approach will enable us to create batteries from only abundant elements, achieve ultralong battery cycle life, prevent sodium-dendrite-induced short-circuiting by using a ‘self-healing’ metal anode that can transform into liquid when the battery is operating, and efficiently recycle the battery’s anode and cathode. We will also improve the manufacturing process by using time- and energy-efficient processes including direct ink writing, solid-state conversion, and infiltration.”

Read the full story in Penn Engineering Today.

BE Seminar: “Systems-level Analyses of the Human Gut Microbiome” (Ilana Lauren Brito)

Ilana Lauren Brito, Ph.D.

Speaker: Ilana Lauren Brito, Ph.D.
Assistant Professor, Mong Family Sesquicentennial Faculty Fellow in Biomedical Engineering
Meinig School of Biomedical Engineering
Cornell University

Date: Thursday, October 28, 2021
Time: 3:30-4:30 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu
Room: Moore 216

Abstract: A major question regarding the human gut microbiota is: by what mechanisms do our most intimately associated organisms affect human health? In this talk, I will present several systems-level approaches that we have developed to address this fundamental question. My lab has pioneered methods that leverage protein-protein interactions to implicate bacterial proteins in human pathways linked to disease, revealing for the first time a network of interactions that affect diseases such as colorectal cancer, inflammatory bowel disease, type 2 diabetes and obesity that can be mined for novel therapeutics and therapeutic targets. I will present novel methods that that enable deeper insight into the transcriptome of organisms within our guts and their spatial localization. Finally, I will shift to the problem of the spread of antibiotic resistance, in which the gut microbiota are implicated. Pathogens become multi-drug resistance by acquiring resistance traits carried by the gut microbiota. Studying this process in microbiomes is inherently difficult using current methods. I will present several methods that enable tracking of genes within the microbiome and computational tools that predict the network of gene transfer between bacteria. Overall, these systems-level tools provide deep insight into the knobs we can turn to engineer outcomes within the microbiome that can improve human health.

Ilana Brito Bio: Ilana Brito is an Assistant Professor of Biomedical Engineering at Cornell University. Ilana received a BA from Harvard and a PhD from MIT. She started her postdoc as an Earth Institute Postdoctoral Fellow at Columbia University where she launched the Fiji Community Microbiome Project, a study aimed at tracking microbiota across people and their social networks, and continued this work at MIT and the Broad Institute working with Eric Alm. In her lab at Cornell, Ilana and her team are developing a suite of experimental systems biology tools to probe the functions of the human microbiome in a robust, high-throughput manner. Ilana has received numerous accolades for her work, including a Sloan Research Fellowship, Packard Fellowship, a Pew Biomedical Research Scholarship and an NIH New Innovator Award.

Carl June Highlighted for Success in Gene Therapy

Carl June, MD

Scientific American recently featured two gene therapies that were invented at Penn, including research from Carl June, MD, the Richard W. Vague Professor in Immunotherapy in Pathology and Laboratory Medicine, director of the Center for Cellular Immunotherapies, and member of the Penn Bioengineering Graduate Group, which led to the FDA approval for the CAR T therapy (sold by Novartis as Kymriah) for treating acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

Read “Four Success Stories in Gene Therapy” in Scientific American.

Nerve Repair, With Help From Stem Cells

A cross-disciplinary Penn team is pioneering a new approach to peripheral nerve repair.

In a new publication in the journal npj Regenerative Medicine, a team of Penn researchers from the School of Dental Medicine and the Perelman School of Medicine “coaxed human gingiva-derived mesenchymal stem cells (GMSCs) to grow Schwann-like cells, the pro-regenerative cells of the peripheral nervous system that make myelin and neural growth factors,” addressing the need for regrowing functional nerves involving commercially-available scaffolds to guide nerve growth. The study was led by Anh Le, Chair and Norman Vine Endowed Professor of Oral Rehabilitation in the Department of Oral and Maxillofacial Surgery/Pharmacology at the University of Pennsylvania School of Dental Medicine, and was co-authored by D. Kacy Cullen, Associate Professor in Neurosurgery at the Perelman School of Medicine at Penn and the Philadelphia Veterans Affairs Medical Center and member of the Bioengineering Graduate Group:

D. Kacy Cullen (Image: Eric Sucar)

“To get host Schwann cells all throughout a bioscaffold, you’re basically approximating natural nerve repair,” Cullen says. Indeed, when Le and Cullen’s groups collaborated to implant these grafts into rodents with a facial nerve injury and then tested the results, they saw evidence of a functional repair. The animals had less facial droop than those that received an “empty” graft and nerve conduction was restored. The implanted stem cells also survived in the animals for months following the transplant.

“The animals that received nerve conduits laden with the infused cells had a performance that matched the group that received an autograft for their repair,” he says. “When you’re able to match the performance of the gold-standard procedure without a second surgery to acquire the autograft, that is definitely a technology to pursue further.”

Read the full story and view the full list of collaborators in Penn Today.

Dani Bassett Elected an American Physical Society Fellow

Dani Bassett, Ph.D.

Dani S. Bassett,  J. Peter Skirkanich Professor in the departments of Bioengineering and Electrical and Systems Engineering, has been elected a 2021 Fellow of the American Physical Society (APS) “for significant contributions to the network modeling of the human brain, including dynamical changes caused by evolution, learning, aging, and disease.”

The prestigious APS Fellowship Program signifies recognition by one’s professional peers. Each year, no more than one half of one percent of the APS membership is recognized with this distinct honor. Bassett’s election and groundbreaking work in biological physics and network science will be recognized through presentation of a certificate at the APS March Meeting.

Bassett is a pioneer in the field of network neuroscience, an emerging subfield which incorporates elements of mathematics, physics,  biology and systems engineering to better understand how the overall shape of connections between individual neurons influences cognitive traits. They lead the Complex Systems lab which tackles problems at the intersection of science, engineering, and medicine using systems-level approaches, exploring fields such as curiosity, dynamic networks in neuroscience, and psychiatric disease.

Bassett recently collaborated with Penn artist-in-residence Rebecca Kamen and other scholars on an interdisciplinary art exhibit on the creative process in art and science at the Katzen Art Center at American University. They have also published research modeling different types of curiosity and exploring gender-based citation bias in neuroscience publishing.

“I’m thrilled and humbled to receive this honor from the American Physical Society,” says Bassett. “I am indebted to the many fantastic mentees, colleagues, and mentors that have made my time in science such an exciting adventure. Thank you.”

Read more stories about Bassett’s research here.

Penn Anti-Cancer Engineering Center Will Delve Into the Disease’s Physical Fundamentals

by Evan Lerner

A colorized microscope image of an osteosarcoma shows how cellular fibers can transfer physical force between neighboring nuclei, influencing genes. The Penn Anti-Cancer Engineering Center will study such forces, looking for mechanisms that could lead to new treatments or preventative therapies.

Advances in cell and molecular technologies are revolutionizing the treatment of cancer, with faster detection, targeted therapies and, in some cases, the ability to permanently retrain a patient’s own immune system to destroy malignant cells.

However, there are fundamental forces and associated challenges that determine how cancer grows and spreads. The pathological genes that give rise to tumors are regulated in part by a cell’s microenvironment, meaning that the physical push and pull of neighboring cells play a role alongside the chemical signals passed within and between them.

The Penn Anti-Cancer Engineering Center (PACE) will bring diverse research groups from the School of Engineering and Applied Science together with labs in the School of Arts & Sciences and the Perelman School of Medicine to understand these physical forces, leveraging their insights to develop new types of treatments and preventative therapies.

Supported by a series of grants from the NIH’s National Cancer Institute, the PACE Center is Penn’s new hub within the Physical Sciences in Oncology Network. It will draw upon Penn’s ecosystem of related research, including faculty members from the Abramson Cancer Center, Center for Targeted Therapeutics and Translational Nanomedicine, Center for Soft and Living Matter, Institute for Regenerative Medicine, Institute for Immunology and Center for Genome Integrity.

Dennis Discher and Ravi Radhakrishnan

The Center’s founding members are Dennis Discher, Robert D. Bent Professor with appointments in the Departments of Chemical and Biomolecular Engineering (CBE), Bioengineering (BE) and Mechanical Engineering and Applied Mechanics (MEAM), and Ravi Radhakrishnan, Professor and chair of BE with an appointment in CBE.

Discher, an expert in mechanobiology and in delivery of cells and nanoparticles to solid tumors, and Radhakrishnan, an expert on modeling physical forces that influence binding events, have long collaborated within the Physical Sciences in Oncology Network. This large network of physical scientists and engineers focuses on cancer mechanisms and develops new tools and trainee opportunities shared across the U.S. and around the world.

Lukasz Bugaj, Alex Hughes, Jenny Jiang, Bomyi Lim, Jennifer Lukes and Vivek Shenoy (Clockwise from upper left).

Additional Engineering faculty with growing efforts in the new Center include Lukasz Bugaj, Alex Hughes and Jenny Jiang (BE), Bomyi Lim (CBE), Jennifer Lukes (MEAM) and Vivek Shenoy (Materials Science and Engineering).

Among the PACE Center’s initial research efforts are studies of the genetic and immune mechanisms associated with whether a tumor is solid or liquid and investigations into how physical stresses influence cell signaling.

Originally posted in Penn Engineering Today.