Shedding Light on Cellular Metabolism to Fight Disease

by

Enamored by the chemical processes of life, Yihui Shen, J. Peter and Geri Skirkanich Assistant Professor of Innovation in Bioengineering, started her research career as a chemist studying the way that proteins fold and the intricate dynamics underlying life processes.

“As an undergraduate, I studied physical chemistry, thinking that one day I’d be addressing challenges in hardcore STEM fields,” she says. “It wasn’t until I observed the dynamics of a single protein molecule that I fell in love with microscopy. I realized that this imaging tool could not only help us observe biological processes on a small scale, but it could also provide new insight at the interface of engineering, chemistry and physics and solve problems on a large scale.”

When Shen turned her attention to microscopy, the field itself was advancing quickly, with improvements being made and new techniques being released every month. Without missing a beat, Shen dove deeper into the most current tools available when she joined Dr. Wei Min’s lab at Columbia University as a doctoral student.

“Professor Wei Min is a pioneer in a new imaging technique called coherent Raman imaging,” says Shen. “In this type of microscopy, we focus light on a very specific point in the cell and measure the amount of scattered light that comes back after exchanging energy with the molecular vibration. This approach allows us to visualize the spatial distribution of different molecules, the very chemistry of life I had studied as an undergraduate, at a high enough resolution to gain insights into biological processes, such as tissue organization, drug distribution and cellular metabolism.”

With this new tool under her belt, Shen was able to ask the kinds of questions that could connect the use of this observation tool to practical applications for real-world challenges.

“I started thinking outside the box,” says Shen. “What if we could observe the chemical exchanges involved in metabolism as they are happening on the scale of a single cell, and then use that insight to pinpoint the exact metabolic pathways and molecules that facilitate tumor growth and disease?”

Read the full story in Penn Engineering Today.

Arjun Raj Explores Whether Cells Can Learn in 2024 Heilmeier Lecture

Arjun Raj (center) accepts the Heilmeier Award, with Bioengineering Department Chair Ravi Radhakrishnan (left) and Dean Vijay Kumar (right).

Arjun Raj, Professor in Bioengineering at Penn Engineering and in Genetics at the Perelman School of Medicine, has been honored with the 2023-24 George H. Heilmeier Faculty Award for Excellence for “pioneering the development and application of single-cell, cancer-fighting technologies.”

The George H. Heilmeier Faculty Award for Excellence in Research was “established by Penn Engineering for the purpose of recognizing excellence in scholarly activities of the faculty. Named in honor of George H. Heilmeier, it recognizes his extraordinary research career, his leadership in technical innovation and public service, and his loyal and steadfast support of Penn Engineering.”

Dr. Raj delivered his lecture, entitled “Can a Cell Learn?” on April 8, 2024. In this talk, Raj explores whether it is possible for cells to adapt to their environment by learning, thereby overcoming their genetic destiny.

Learn more about, this award, Dr. Raj and his research here. View the lecture recording below.

The Raj Lab for Systems Biology is interested in building a quantitative understanding of cellular function. They develop new tools for quantifying biological processes based on imaging and sequencing and then use those techniques to help us answer questions in molecular and cellular biology. Read more stories featuring Raj in the BE Blog.

2022 Graduate Research Fellowships for Bioengineering Students

Congratulations to the two Bioengineering students to receive 2022 National Science Foundation Graduate Research Fellowship Program (NSF GRFP) fellowships. The prestigious NSF GRFP program recognizes and supports outstanding graduate students in NSF-supported fields. The eighteen Penn 2022 honorees were selected from a highly-competitive pool of over 12,000 applications nationwide. Further information about the program can be found on the NSF website.

 Gianna Therese Busch, PhD student, Bioengineering
Gianna is a member of the systems biology lab of Arjun Raj, Professor in Bioengineering and Genetics. Her research focuses on single-cell differences in cancer metabolism and drug resistance.

 

 

 

Shawn Kang, BSE/MSE, Bioengineering (’22)
Shawn conducted research in the BIOLines Lab of Dan Huh, Associate Professor in Bioengineering, where he worked to develop more physiologically relevant models of human health and disease by combining organs-on-a-chip and organoid technology.

 

 

 

The following Bioengineering students also received Honorable Mentions:
Michael Steven DiStefano, PhD student
Rohan Dipak Patel, PhD student
Abraham Joseph Waldman, PhD student

Read the full list of NSF GRFP Honorees on the Grad Center at Penn website.

Penn Bioengineering Student Laila Barakat Norford Named Goldwater Scholar

Laila Barakat Norford (Class of 2023)

Five University of Pennsylvania undergraduates have received 2022 Goldwater Scholarships, including Laila Barakat Norford, a third year Bioengineering major from Wayne, Pennsylvania. Goldwater Scholarships are awarded to sophomores or juniors planning research careers in mathematics, the natural sciences, or engineering.

She is among the 417 students named 2022 Goldwater Scholars from the 1,242 students nominated by 433 academic institutions in the United States, according to the Barry Goldwater Scholarship & Excellence in Education Foundation. Each scholarship provides as much as $7,500 each year for as many as two years of undergraduate study.

Penn has produced 23 Goldwater Scholars in the past seven years and a total of 55 since Congress established the scholarship in 1986.

Laila Barakat Norford is majoring in bioengineering with minors in computer science and bioethics in Penn Engineering. As a Rachleff Scholar, Norford has been engaged in systems biology research since her first year. Her current research uses machine learning to predict cell types in intestinal organoids from live-cell images, enabling the mechanisms of development and disease to be characterized in detail. At Penn, she is an Orientation Peer Advisor, a volunteer with Advancing Women in Engineering and the Penn Society of Women Engineers, and a teaching assistant for introductory computer science. She is secretary of the Penn Band, plays the clarinet, and is a member of the Band’s Fanfare Honor Society for service and leadership. Norford registers voters with Penn Leads the Vote and canvasses for state government candidates. She is also involved in Penn’s LGBTQ+ community as a member of PennAces. Norford plans to pursue a Ph.D. in computational biology, aspiring to build computational tools to address understudied diseases and health disparities.

The students applied for the Goldwater Scholarship with assistance from Penn’s Center for Undergraduate Research and Fellowships.

Read about all five 2022 Penn Goldwater Scholars in Penn Today.

BE Seminar: “Promoting Appendage/Limb Regeneration in Jellyfish, Drosophila, and Mouse” (Lea Goentoro)

We hope you will join us for our final seminar of the spring semester!

Speaker: Lea Goentoro, Ph.D.
Professor
Biology
California Institute of Technology

Date: Thursday, April 22, 2021
Time: 3:00-4:00 PM EDT
Zoom – check email for link or contact ksas@seas.upenn.edu

Abstract: Can limb regeneration be induced? In this talk, I will discuss our work to promote regeneration in animals with limited regeneration capacity. I will present our recent discovery of a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.

Lea Goentoro Bio: Lea Goentoro is a Professor of Biology in the Division of Biology and Biological Engineering at the California Institute of Technology. She holds a B.S. in Chemical Engineering from University of Wisconsin, Madison and a Ph.D. in Chemical Engineering from Princeton University. Prior to joining Caltech, she did postdoctoral training in the Department of Systems Biology at Harvard Medical School. Her work has been supported by the Damon-Runyon Cancer Foundation, the James S. McDonnell Foundation, the National Science Foundation, and the National Institute of Health.

BE Seminar: “Designing Biology for Detection and Control” (Pamela A. Silver)

Speaker: Pamela A. Silver, Ph.D.
Elliot T. and Onie H. Adams Professor of Biochemistry and Systems Biology
Harvard Medical School

Date: Thursday, January 28, 2021
Time: 3:00-4:00 PM EST
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Designing Biology for Detection and Control”

Abstract:

The engineering of Biology presents infinite opportunities for therapeutic design, diagnosis, and prevention of disease. We use what we know from Nature to engineer systems with predictable behaviors. We also seek to discover new natural strategies to then re-engineer. I will present concepts and experiments that address how we approach these problems in a systematic way. Conceptually, we seek to both design cells and proteins to control disease states and to detect and predict the severity of emerging pathogens. For example, we have engineered components of the gut microbiome to act therapeutics for infectious disease, proteins to prolong cell states, living pathogen sensors and high throughput analysis to predict immune response of emerging viruses.

Bio:

Pamela Silver is the Adams Professor of Biochemistry and Systems Biology at Harvard Medical School and the Wyss Institute for Biologically Inspired Engineering. She received her BS in Chemistry and PhD in Biochemistry from the University of California. Her work has been recognized by an Established Investigator of the American Heart Association, a Research Scholar of the March of Dimes, an NSF Presidential Young Investigator Award, Claudia Adams Barr Investigator, an NIH MERIT award, the Philosophical Society Lecture, a Fellow of the Radcliffe Institute, and election to the American Academy of Arts and Sciences. She is among the top global influencers in Synthetic Biology and her work was named one of the top 10 breakthroughs by the World Economic Forum. She serves on the board of the Internationally Genetics Engineering Machines (iGEM) Competition and is member of the National Science Advisory Board for Biosecurity. She has led numerous projects for ARPA-E, iARPA and DARPA. She is the co-founder of several Biotech companies including most recently KulaBio and serves on numerous public and private advisory boards.

BE Seminar: “Predicting the Effects of Engineering Immune Cells Using Systems Biology Modeling” (Stacey Finley, USC)

The Penn Bioengineering virtual seminar series continues on October 1st.

Stacey Finley, PhD

 

Speaker: Stacey Finley, Ph.D.
Gordon S. Marshall Early Career Chair and Associate Professor of Biomedical Engineering and Biological Sciences
University of Southern California

 

Date: Thursday, October 1, 2020
Time: 3:00-4:00 pm
Zoom – check email for link or contact ksas@seas.upenn.edu

Title: “Predicting the Effects of Engineering Immune Cells Using Systems Biology Modeling”

Abstract:

Systems biology approaches, including computational models, provide a framework to test biological hypotheses and optimize effective therapeutic strategies to treat human diseases. In this talk, I present recent work in modeling signaling in cancer-targeting immune cells, including CAR T cells at Natural Killer cells. Chimeric antigen receptors (CARs) are comprised of a variety of different activating domains and co-stimulatory domains that initiate signaling required for T cell activation. There is a lack of understanding of the mechanisms by which activation occurs. We apply mathematical modeling to investigate how CAR structure influences downstream T cell signaling and develop new hypotheses for the optimal design of CAR-engineered T cell systems. Natural Killer cells also provide a useful platform for targeting cancer cells. However, NK cells have been shown to exhibit reduced killing ability with prolonged stimulation by cancer cells. We use a combination of mechanistic model, optimal control theory and in silico synthetic biology to investigate strategies to enhance NK cell-mediated killing.

Bio:

Stacey D. Finley is the Gordon S. Marshall Early Career Chair and Associate Professor of Biomedical Engineering at the University of Southern California. Dr. Finley received her B.S. in Chemical Engineering from Florida A & M University and obtained her Ph.D. in Chemical Engineering from Northwestern University. She completed postdoctoral training at Johns Hopkins University in the Department of Biomedical Engineering. Dr. Finley joined the faculty at USC in 2013, and she leads the Computational Systems Biology Laboratory. Dr. Finley has joint appointments in the Departments of Chemical Engineering and Materials Science and Biological Science, and she is a member of the USC Norris Comprehensive Cancer Center. Dr. Finley is also the Director of the Center for Computational Modeling of Cancer at USC. Her research is supported by grants from NSF, NIH, and the American Cancer Society.

Selected honors: 2016 NSF Faculty Early CAREER Award; 2016 Young Innovator by the Cellular and Molecular Bioengineering journal; Leah Edelstein-Keshet Prize from the Society of Mathematical Biology; Junior Research Award from the USC Viterbi School of Engineering; the Hanna Reisler Mentorship Award; 2018 AACR NextGen Star; 2018 Orange County Engineering Council Outstanding Young Engineer

See the full list of upcoming Penn Bioengineering fall seminars here.