Engheta, Margulies Elected to the American Academy of Arts & Sciences

Two faculty affiliated with the Department of Bioengineering at the University of Pennsylvania have been elected to the American Academy of Arts & Sciences. They join nearly 270 new members honored in 2023, recognized for their excellence, innovation, leadership, and broad array of accomplishments.

Nader Engheta
Nader Engheta, the H. Nedwill Ramsey Professor.

Nader Engheta is the H. Nedwill Ramsey Professor, with affiliations in the departments of Electrical and Systems Engineering (primary appointment), Bioengineering (secondary appointment) and Materials Science and Engineering (secondary appointment) in the School of Engineering and Applied Science; and Physics and Astronomy (secondary appointment) in the School of Arts & Sciences. His current research activities span a broad range of areas including optics, photonics, metamaterials, electrodynamics, microwaves, nano-optics, graphene photonics, imaging and sensing inspired by eyes of animal species, microwave and optical antennas, and physics and engineering of fields and waves. He has received numerous awards for his research, including the 2023 Benjamin Franklin Medal in Electrical Engineering, the 2020 Isaac Newton Medal and Prize from the Institute of Physics (U.K.), the 2020 Max Born Award from OPTICA (formerly OSA), induction to the Canadian Academy of Engineering as an International Fellow (2019), U.S. National Academy of Inventors (2015), and the Ellis Island Medal of Honor from the Ellis Island Honors Society (2019). He joins four other Penn faculty elected to the Academy this year.

Read the announcement and the full list of Penn electees in Penn Today.

Susan Margulies, Ph.D. (Photo: Jack Kearse)

Susan Margulies, Professor in the Wallace H. Coulter Department of Biomedical Engineering in the College of Engineering at Georgia Tech, was also elected. Margulies is both Professor Emeritus in Penn Bioengineering and an alumna of the program, having earned her Ph.D. with the department in 1987. Margulies is an expert in pediatric traumatic brain injury and lung injury. She previously served as Chair of Biomedical Engineering at Georgia Tech/Emory University and in 2021 became the first biomedical engineer selected to lead the National Science Foundation’s (NSF) Directorate of Engineering.

Read the announcement of Margulies’ elected to the Academy at Georgia Tech.

Emeritus Faculty Member Susan Margulies Named NSF Directorate of Engineering

Susan Margulies, Ph.D. (Credit Emory University)

Susan Margulies, Professor Emeritus in Bioengineering, has been selected to lead the National Science Foundation’s (NSF) Directorate of Engineering, “the first biomedical engineer to head the directorate.” Margulies is chair of the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University. She earned her master’s and doctoral degrees from Penn Bioengineering before joining the department as an Assistant Professor in 1993.

In a press release from Emory University, Margulies stated that, “The opportunity to serve the NSF resonates with my values — catalyzing impact through innovation, rigor, partnership, and inclusion.” The announcement continues:

“Building on initiatives she developed at the University of Pennsylvania, Margulies prioritized career development for faculty and Ph.D. graduates during her years leading Coulter BME. She added dedicated staff to help doctoral students prepare for increasingly popular career paths outside of academia. The department increased the diversity of Ph.D. students and improved faculty diversity at all ranks during her tenure. Margulies oversaw hiring of 20 new faculty members and launched formalized mentoring for early career professors, including creating a new associate chair position dedicated to faculty development.”

Margulies will step down from her position as chair in Coulter BME though she will remain in the Georgia Tech and Emory faculty. Her Injury Biomechanics Lab studies “the influence of mechanical factors on the structure and function of human tissues from the macroscopic to microscopic level, with an emphasis on the brain and lungs.”

Read the full announcement in the Emory News Center.

Read the NSF press release here.

Bioengineering News Round-Up (April 2020)

by Sophie Burkholder

How to Heal Chronic Wounds with “Smart” Bandages

Some medical conditions, like diabetes or limb amputation, have the potential to result in wounds that never heal, affecting patients for the rest of their lives. Though normal wound-healing processes are relatively understood by medical professionals, the complications that can lead to chronic non-healing wounds are often varied and complex, creating a gap in successful treatments. But biomedical engineering faculty from the University of Connecticut want to change that.

Ali Tamayol, Ph.D., an Associate Professor in UConn’s Biomedical Engineering Department, developed what he’s calling a “smart” bandage in collaboration with researchers from the University of Nebraska-Lincoln and Harvard Medical School. The bandage, paired with a smartphone platform, has the ability to deliver medications to the wound via wirelessly controlled mini needles. The minimally invasive device thus allows doctors to control medication dosages for wounds without the patient even having to come in for an appointment. Early tests of the device on mice showed success in wound-healing processes, and Tamayol hopes that soon, the technology will be able to do the same for humans.

A New Patch Could Fix Broken Hearts

Heart disease is by far one of the most common medical conditions in the world, and has a high risk of morbidity. While some efforts in tissue engineering have sought to resolve cardiac tissue damage, they often require the use of existing heart cells, which can introduce a variety of complications to its integration into the human body. So, a group of bioengineers at Trinity College in Dublin sought to eliminate the need for cells by creating a patch that mimics both the mechanical and electrical properties of cardiac tissue.

Using thermoelastic polymers, the engineers, led by Ussher Assistant Professor in Biomedical Engineering Michael Monaghan, Ph.D., created a patch that could withstand multiple rounds of stretching and exhibited elasticity: two of the biggest challenges in designing synthetic cardiac tissues. With the desired mechanical properties working, the team then coated the patches with an electroconductive polymer that would allow for the necessary electrical signaling of cardiac tissue without decreasing cell compatibility in the patch. So far, the patch has demonstrated success in both mechanical and electrical behaviors in ex vivo models, suggesting promise that it might be able to work in the human body, too.

3-D Printing a New Tissue Engineering Scaffold

While successful tissue engineering innovations often hold tremendous promise for advances in personalized medicine and regeneration, creating the right scaffold for cells to grow on either before or after implantation into the body can be tricky. One common approach is to use 3-D printers to extrude scaffolds into customizable shapes. But the problem is that not all scaffold materials that are best for the body will hold up their structure in the 3-D printing process.

A team of biomedical engineers at Rutgers University led by Chair of Biomedical Engineering David I. Schreiber, Ph.D., hopes to apply the use of hyaluronic acid — a common natural molecule throughout the human body — in conjunction with polyethylene glycol to create a gel-like scaffold. The hope is that the polyethylene glycol will improve the scaffold’s durability, as using hyaluronic acid alone creates a substance that is often too weak for tissue engineering use. Envisioning this gel-like scaffold as a sort of ink cartridge, the engineers hope that they can create a platform that’s customizable for a variety of different cells that require different mechanical properties to survive. Notably, this new approach can specifically control both the stiffness and the ligands of the scaffold, tailoring it to a number of tissue engineering applications.

A New Portable Chip Can Track Wide Ranges of Brain Activity

Understanding the workings of the human brain is no small feat, and neuroscience still has a long way to go. While recent technology in brain probes and imaging allows for better understanding of the organ than ever before, that technology often requires immense amounts of wires and stationary attachments, limiting the scope of brain activity that can be studied. The answer to this problem? Figure out a way to implant a portable probe into the brain to monitor its everyday signaling pathways.

That’s exactly what researchers from the University of Arizona, George Washington University, and Northwestern University set out to do. Together, they created a small, wireless, and battery-free device that can monitor brain activity by using light. The light-sensing works by first tinting some neurons with a dye that can change its brightness according to neuronal activity levels. Instead of using a battery, the device relies on energy from oscillating magnetic fields that it can pick up with a miniature antenna. Led in part by the University of Arizona’s Gutruf Lab, the new device holds promise for better understanding how complex brain conditions like Alzheimer’s and Parkinson’s might work, as well as what the mechanisms of some mental health conditions look like, too.

People & Places

Each year, the National Academy of Engineering (NAE) elects new members in what is considered one of the highest professional honors in engineering. This year, NAE elected 87 new members and 18 international members, including a former Penn faculty member and alumna Susan S. Margulies, Ph.D. Now a professor of Biomedical Engineering at Georgia Tech and Emory University, Margulies was recognized by the NAE for her contributions to “elaborating the traumatic injury thresholds of brain and lung in terms of structure-function mechanisms.” Congratulations, Dr. Margulies!

Nimmi Ramanujam, Ph.D., a Distinguished Professor of Bioengineering at Duke University, was recently announced as having one of the highest-scoring proposals for the MacArthur Foundation’s 100&Change competition for her proposal “Women-Inspired Strategies for Health (WISH): A Revolution Against Cervical Cancer.” Dr. Ramanujam’s proposal, which will enter the next round of competition for the grant, focuses on closing the cervical cancer inequity gap by creating a new model of women-centered healthcare.

Margulies Named BME Chair at GA Tech/Emory

Margulies
Susan Margulies, Ph.D.

Susan S. Margulies, Ph.D., currently professor of bioengineering at the University of Pennsylvania, has been named the Wallace H. Coulter Chair of the Department of Biomedical Engineering at Georgia Tech/Emory University and the Georgia Research Alliance Eminent Scholar in Injury Biomechanics. Her appointment begins August 1.

Dr. Margulies’s history at Penn goes back to 1982, she arrived at Penn to earn a master’s degree in the bioengineering department, followed by her Ph.D. in 1987. In 1993, she returned to Penn as an assistant professor, with promotion to associate in 1998 and full professor in 2004.

“At GT-Emory BME I will lead 72 faculty and 1,500 students, and look forward to creating impact in a new environment,” Dr. Margulies says. “As a Penn alum and emeritus faculty member, my ties here run deep. I look forward to keeping in touch.”

Dr. Margulies’s has deep roots at Penn indeed, and her accomplishments are broad and distinctive. They include:

  • Creating new faculty mentoring programs across the university, including the Penn Faculty Pathways program
  • Originating the Penn Forum for Women Faculty, a key campus resource for discussion and collaboration
  • Chairing the Faculty Senate
  • Teaching a broad number of courses spanning Introduction to Bioengineering through to Pedagogical Methods in Engineering Education
  • Establishing many new research initiatives that extended into Children’s Hospital of Philadelphia and significant relationships with industry
  • Activity with several national leadership positions

On Dr. Margulies’s departure, David Meaney, the department chair, said, “We will miss Susan’s wisdom and insight, but we wish her the very best in her next step.”

Margulies Among Recipients of Award to Study Concussions

How can physicians and engineers help design athletic equipment and diagnostic tools to better protect teenaged athletes from concussions? A unique group of researchers with neuroscience, bioengineering and clinical expertise are teaming up to translate preclinical research and human studies into better diagnostic tools for the clinic and the sidelines as well as creating the foundation for better headgear and other protective equipment.

concussions margulies
Susan Margulies, PhD

The study will be led by three coinvestigators: Susan Margulies, the Robert D. Bent Professor of Bioengineering at the University of Pennsylvania’s School of Engineering and Applied Science (right); Kristy Arbogast, co-scientific director of the Center for Injury Research and Prevention at the Children’s Hospital of Philadelphia; and Christina Master, a primary care sports medicine specialist and concussion researcher at CHOP. They will use a new $4.5 million award from the National Institute of Neurological Disorders and Stroke.

The five-year project focuses specifically on developing a suite of quantitative assessment tools to enhance accuracy of sports-related concussion diagnoses, with a focus on objective metrics of activity, balance, neurosensory processing, including eye tracking, and measures of cerebral blood flow. These could also provide prognoses of the time-to-recovery and safe return-to-play for youth athletes. Researchers will examine such factors such as repeated exposures and direction of head motion. In addition, they will also look at sex-specific data to see how prevention and diagnosis strategies need to be tailored for males and females.

The multidisciplinary research team believes this study will result in post-concussion metrics that can provide objective benchmarks for diagnosis, a preliminary understanding of the effect of sub-concussive hits, the magnitude and direction of head motion and sex on symptom time course, as well as markers in the bloodstream that relate to functional outcomes.

Knowing the biomechanical exposure and injury thresholds experienced by different player positions can help sports organizations tailor prevention strategies and companies to create protective equipment design for specific sports and even specific positions.

The study will enroll research participants from The Shipley School, a co-ed independent school in suburban Philadelphias, and from CHOP’s Concussion Care for Kids: Minds Matter program which annually sees more than 2,500 patients with concussion in the Greater Delaware Valley region.

The study is funded by the National Institutes of Health.