Penn Bioengineers Recommend Improvements to Science Communication

Three graduate students in Bioengineering have collaborated to craft a list of recommendations to improve science communication during national health emergencies.

Doctoral students Miles J. Arnett, Dimitris Boufidis, and Melanie Hilman are part of the Penn Science Policy and Diplomacy Group (PSPDG), student organization which creates opportunities for students to get hands-on experience in Science Policy, Diplomacy, and Communication.

Their brief reviews the public health response to the COVID-19 pandemic and recommends specific improvements to science policy and communication by national scientific institutions:

The public health response to the pandemic was dramatically weakened by an uncoordinated communication strategy, inconsistent messaging, and fractured media environments. These shortcomings had a real human cost, with an estimated hundreds of thousands of Americans dying as a consequence of high rates of vaccine hesitancy. Now, in the aftermath of the pandemic, we have a chance to learn from this crisis and develop a more robust science communication infrastructure for future health emergencies.

Read “From Chaos to Clarity: Reinventing Science Communication After COVID-19” at Medium.

Training the Next Generation of Scientists on Soft Materials, Machine Learning and Science Policy

by Melissa Pappas

Developing new soft materials requires new data-driven research techniques, such as autonomous experimentation. Data regarding nanometer-scale material structure, taken by X-ray measurements at a synchrotron, can be fed into an algorithm that identifies the most relevant features, represented here as red dots. The algorithm then determines the optimum conditions for the next set of measurements and directs their execution without human intervention. Brookhaven National Laboratory’s Kevin Yager, who helped develop this technique, will co-teach a course on it as part of a new Penn project on Data Driven Soft Materials Research.

The National Science Foundation’s Research Traineeship Program aims to support graduate students, educate the STEM leaders of tomorrow and strengthen the national research infrastructure. The program’s latest series of grants are going toward university programs focused on artificial intelligence and quantum information science and engineering – two areas of high priority in academia, industry and government.

Chinedum Osuji, Eduardo D. Glandt Presidential Professor and Chair of the Department of Chemical and Biomolecular Engineering (CBE), has received one of these grants to apply data science and machine learning to the field of soft materials. The grant will provide five years of support and a total of $3 million for a new Penn project on Data Driven Soft Materials Research.

Osuji will work with co-PIs Russell Composto, Professor and Howell Family Faculty Fellow in Materials Science and Engineering, Bioengineering, and in CBE, Zahra Fakhraai, Associate Professor of Chemistry in Penn’s School of Arts & Sciences (SAS) with a secondary appointment in CBE, Paris Perdikaris, Assistant Professor in Mechanical Engineering and Applied Mechanics, and Andrea Liu, Hepburn Professor of Physics and Astronomy in SAS, all of whom will help run the program and provide the connections between the multiple fields of study where its students will train.

These and other affiliated faculty members will work closely with co-PI Kristin Field, who will serve as Program Coordinator and Director of Education.

Read the full story in Penn Engineering Today.