Herman P. Schwan Distinguished Lecture: “Seeing the Unseen: How AI Redefines Bioengineering” (Dorin Comaniciu, Siemens Healthineers)

Dorin Comaniciu, Ph.D.

We hope you will join us for the 2023 Herman P. Schwan Distinguished Lecture by Dr. Dorin Comaniciu, hosted by the Department of Bioengineering.

Wednesday, December 13, 2023
1:00 PM ET
Location: Wu & Chen Auditorium (Levine 101)
The lecture and Q&A will be followed by a light reception in Levine Lobby.

Speaker: Dorin Comaniciu, Ph.D.
Senior Vice President
Artificial Intelligence and Digital Innovations
Siemens Healthineers

About Dorin Comaniciu:

Dr. Comaniciu serves as Senior Vice President for Artificial Intelligence and Digital Innovation at Siemens Healthineers. His scientific contributions to machine intelligence and computational imaging have translated to multiple clinical products focused on improving the quality of care, specifically in the fields of diagnostic imaging, image-guided therapy, and precision medicine.

Comaniciu is a member of the National Academy of Medicine, the Romanian Academy, and a Top Innovator of Siemens. He is a Fellow of the IEEE, ACM, MICCAI Society, and AIMBE, and a recipient of the IEEE Longuet-Higgins Prize for fundamental contributions to computer vision. Recent recognition of his work includes an honorary doctorate from Friedrich-Alexander University of Erlangen-Nuremberg.

He has co-authored 550 granted patents and 350 peer-reviewed publications that have received 61,000 citations, with an h-index of 102, in the areas of machine intelligence, medical imaging, and precision medicine.

A graduate of University of Pennsylvania’s Wharton School, Comaniciu received a doctorate in electrical and computer engineering from Rutgers University and a doctorate in electronics and telecommunications from Polytechnic University of Bucharest.

He is an advocate for technological innovations that save and enhance lives, addressing critical issues in global health.

About the Schwan Lecture:

The Herman P. Schwan Distinguished Lecture is in honor of one of the founding members of the Department of Bioengineering, who emigrated from Germany after World War II and helped create the field of bioengineering in the US. It recognizes people with a similar transformative impact on the field of bioengineering.

Herman P. Schwan Distinguished Lecture: “Nucleoside-modified mRNA-LNP therapeutics” (Drew Weissman, Perelman School of Medicine)

We hope you will join us for the Spring 2022 Herman P. Schwan Distinguished Lecture by Dr. Drew Weissman, hosted by the Department of Bioengineering.

Date: Tuesday, March 29, 2022
Time: 3:30-5:00 PM
Location: Bodek Lounge, Houston Hall
Reception to follow
Zoom Link
Password: schwan22

Drew Weissman, M.D., Ph.D.

Speaker: Drew Weissman, M.D., Ph.D.
Roberts Family Professor in Vaccine Research, Department of Medicine
Perelman School of Medicine
University of Pennsylvania

Abstract:

Vaccines prevent 4-5 million deaths a year making them the principal tool of medical intervention worldwide. Nucleoside-modified mRNA was developed over 15 years ago and has become the darling of the COVID-19 pandemic with the first 2 FDA approved vaccines based on it. These vaccines show greater than 90% efficacy and outstanding safety in clinical use. The mechanism for the outstanding immune response induction are the prolonged production of antigen leading to continuous loading of germinal centers and the adjuvant effect of the LNPs, which selectively stimulate T follicular helper cells that drive germinal center responses. Vaccine against many pathogens, including HIV, HCV, HSV2, CMV, universal influenza, coronavirus variants, pancoronavirus, nipah, norovirus, malaria, TB, and many others are currently in development. Nucleoside-modified mRNA is also being developed for therapeutic protein delivery. Clinical trials with mRNA encoded monoclonal antibodies are underway and many other therapeutic or genetic deficient proteins are being developed. Finally, nucleoside-modified mRNA-LNPs are being developed and used for gene therapy. Cas9 knockout to treat transthyretin amyloidosis has shown success in phase 1 trials. We have developed the ability to target specific cells and organs, including lung, brain, heart, CD4+ cells, all T cells, and bone marrow stem cells, with LNPs allowing specific delivery of gene editing and insertion systems to treat diseases such as sickle cell anemia, Nucleoside-modified mRNA will have an enormous potential in the development of new medical therapies.

Bio:

Drew Weissman, M.D., Ph.D. is a professor of Medicine at the Perelman School of Medicine, University of Pennsylvania. He received his graduate degrees from Boston University School of Medicine. Dr. Weissman, in collaboration with Dr. Katalin Karikó, discovered the ability of modified nucleosides in RNA to suppress activation of innate immune sensors and increase the translation of mRNA containing certain modified nucleosides. The nucleoside-modified mRNA-lipid nanoparticle vaccine platform Dr. Weissman’s lab created is used in the first 2 approved COVID-19 vaccines by Pfizer/BioNTech and Moderna. They continue to develop other vaccines that induce potent antibody and T cell responses with mRNA–based vaccines. Dr. Weissman’s lab also develops methods to replace genetically deficient proteins, edit the genome, and specifically target cells and organs with mRNA-LNPs, including lung, heart, brain, CD4+ cells, all T cells, and bone marrow stem cells.

About the Schwan Lecture:

The Herman P. Schwan Distinguished Lecture is in honor of one of the founding members of the Department of Bioengineering, who emigrated from Germany after World War II and helped create the field of bioengineering in the US. It recognizes people with a similar transformative impact on the field of bioengineering.

Herman P. Schwan Distinguished Lecture: “Engineering human tissues for medical impact”

We hope you will join us for the Fall 2019 Herman P. Schwan Distinguished Lecture by Dr. Gordana Vunjak-Novakovic, hosted by the Department of Bioengineering.

Date: Wednesday, November 6th, 2019
Time: 3:30-4:30 PM
Location: Glandt Forum, Singh Center, 3205 Walnut Street

Gordana Vunjak-Novakovic, PhD, Columbia University

Speaker: Gordana Vunjak-Novakovic, PhD, University Professor, The Mikati Foundation Professor of Biomedical Engineering and Medical Sciences, Columbia University in the City of New York

Abstract:

The classical paradigm of tissue engineering involves the integrated use of human stem cells, biomaterial scaffolds (providing a structural and logistic template for tissue formation) and bioreactors (providing environmental control, dynamic sequences of molecular and physical signaling, and insights into the structure and function of the forming tissues). This “biomimetic” approach results in an increasingly successful representation of the environmental milieu of tissue development, regeneration and disease. Living human tissues are now being engineered from various types of human stem cells, and tailored to the patient and the condition being treated. A reverse paradigm is now emerging with the development of the “organs on a chip” platforms for modeling of integrated human physiology, using micro-tissues that are derived from human iPS cells and functionally connected by vascular perfusion. In all cases, the critical questions relate to our ability to recapitulate the cell niches, using bioengineering tools. To illustrate the state of the art in the field and reflect on the current challenges and opportunities, this talk will discuss: (i) anatomically correct bone regeneration, (ii) bioengineering of the lung, (iii) heart repair by a cell-free therapy, and (iv) the use of “organs on a chip” for patient-specific studies of human physiology, injury, healing and disease.

Funding: NIH, NSF, New York State, Mikati Foundation, Schwartz Foundation

Bio:

Gordana Vunjak-Novakovic is a University Professor, the highest academic rank at Columbia University that is reserved for only 16 professors out of 4,000, and the first engineer in the history of Columbia to receive this highest distinction. She is also the Mikati Foundation Professor of Biomedical Engineering and Medical Sciences, and on faculty in the Irving Comprehensive Cancer Center, College of Dental Medicine, Center for Human Development, and Mortimer B Zuckerman Mind Brain Behavior Institute. She directs the Laboratory for Stem Cells and Tissue Engineering that is a bioengineering lead of the Columbia Stem Cell Initiative and a home of the NIH Tissue Engineering Resource Center. She also serves on the Columbia President’s Task Force for Precision Medicine and the Executive Leadership of the Columbia University Medical Center. She received her Ph.D. in Chemical Engineering from the University of Belgrade in Serbia where she was on faculty until 1993, holds a doctorate honoris causa from the University of Novi Sad, and was a Fulbright Fellow at MIT.

The focus of her research is on engineering functional human tissues for regenerative medicine and studies of development and disease. Gordana published 3 books, 60 book chapters, 400 articles (including those in Nature, Cell, Nature Biotechnology, Nature Biomedical Engineering, Nature Communications, Nature Protocols, PNAS, Cell Stem Cell, Science Advances, Science Translational Medicine). With over 44,000 citations and impact factor h=121, she is one of the most highly cited individuals. She gave 420 invited talks, and has 101 licensed, issued or pending patents. With her students, she co-founded four biotech companies: epiBone (epibone.com), Tara Biosystems (tarabiosystems.com), Xylyx Bio (xylyxbio.com), and Immplacate (immplacatehealth.com).

She is a member of the Academia Europaea, Serbian Academy of Arts and Sciences, National Academy of Engineering, National Academy Medicine, National Academy of Inventors, and the American Academy of Arts and Sciences.