Penn Bioengineering Senior Discusses Remote Research Experience

Yi-An Hsieh (BE 2023)

Yi-An Hsieh, a fourth year Bioengineering student from Anaheim, California, worked remotely this summer on a team that spanned three labs, including the Kamoun Lab at the Hospital of the University of Pennsylvania. Hsieh credits her research on kidney graft failure with enriching her scientific skill set, exposing her to machine learning and real-time interaction with genetic datasets. In a guest post for the Career Services Blog, Hseih writes about her remote summer internship experience. “It showed me that this type of research energy that could not be dampened despite the distance,” she writes.

Read “Exploring How Amino Acid Polymorphisms Affect Graft Survival” in the Career Services Blog.

Catherine Michelutti on “Finding New Passions” with the Orion Organisation

Catherine Michelutti (SEAS/WHARTON ’23) working on her internship in her backyard with her dog

Catherine Michelutti, a junior in Bioengineering and Wharton and fellow in the Stavros Niarchos Foundation (SNF) Paideia Program, shared her virtual internship experience with the Orion Organisation, a healthcare NGO based in South Africa that provides for “the educational, training and therapeutic needs of children, youth and adults living with physical, psychosocial challenges, intellectual and neurological disabilities”:

“My internship with the Orion Organization has prompted me to reflect on my identity in terms of where my passions and future career interests lie. My previous work experiences have all been in biomedical research fields, which is something I’m passionate about and want to continue doing throughout my career. However, working with Orion has opened my eyes to the realms of interdisciplinary work that comes with operating a healthcare NGO and the joys that come with it.”

Read the full story in the Penn Abroad blog.

Guest Post: Learning About Regulatory Affairs Through a Virtual Internship

by Casey Colleran (BSE 2021, MSE 2022)

In this guest post, recent Penn Bioengineering graduate and master’s student Casey Colleran writes about her experience in virtual internship at Janssen Pharmaceuticals.

Casey Colleran

During the summer of 2020, I was privileged enough to join the Global Regulatory Affairs team at Janssen Pharmaceutical Companies of Johnson & Johnson. Despite the uncertainties brought on by COVID-19, Janssen was able to bring together a group of five interns to participate in this virtual internship. This remote opportunity provided me with a valuable understanding of Regulatory Affairs, and the pharmaceutical industry. Throughout the 11 weeks, I was able to work alongside Regulatory Scientists in several functional areas of the organization. I learned about the regulations that govern the pharmaceutical industry, and the strategy that goes into communicating with the FDA and other health authorities.

As we rotated through each of these functional areas, myself and the other interns were also able to observe how the pandemic impacted the organization. We were asked to develop our own solutions on how to address these new challenges. Through this task, I learned how to present information in a meaningful way, analyze anecdotal data, improve processes, and communicate across different networks. As a team, myself and four other interns developed probing questions to help us understand how the COVID-19 pandemic has impacted the regulatory landscape, and the different strengths and opportunities employees observed in Janssen’s response to the pandemic. As we rotated through the different functional areas of Janssen’s Global Regulatory Affairs group, we used that time to ask our questions, and make note of anecdotal data that would provide us more insight as to how to address the new challenges brought on by the pandemic, and the virtual work environment. We then created a “COVID-19 Playbook” which broke down the main themes we had heard in our responses, such as the need for a more flexible organization, more efficient and effective communication, improved connectivity in the virtual workplace, and more. We developed suggestions on programming and guidelines that would help strengthen each of these areas, and presented these suggestions to the Senior Leadership Team.

Summer 2020 Janssen interns

Leadership development opportunities were also focal to the internship. I was paired with several amazing mentors who provided me with personalized feedback on how to become a more effective leader. The culture of the organization was extremely welcoming, and I cherish the relationships that I was able to build with my colleagues, so much so that I joined Janssen as a part time contractor this past year. Through this role as a contractor, I have been able to learn more about the day-to-day activities of a Regulatory Scientist through hands-on activities. As a contractor, I have been an integral part of a new “FLEx” Program. As a part of this program, I offer support to Regulatory Scientists by taking on their more routine submissions, giving them the opportunity to work on more strategic based activities, and focus on their personal growth and learning. It has been such a wonderful experience to work closely with these Regulatory Scientists who are still early in their career, as we have been able to learn from each other as well. It has also given me a greater understanding of the regulatory landscape, and by taking part in this new program I again get to see much of my feedback be considered and implemented.

I am so grateful that I had the opportunity to work in such an amazing environment, developed so many skills, and built a network that led me to additional opportunities in Regulatory Affairs at Janssen.

Bioengineering Graduate Students Take the Annual BETA Day Online

By GABE Outreach Chairs and Ph.D. students David Gonzalez-Martinez and David Mai

BETA Day Biomaterials workshop

Every spring, the Graduate Association of Bioengineers (GABE) at Penn partners up with iPraxis, an educational non-profit organization based in Philadelphia, to organize BETA Day, an event that brings together Bioengineering graduate students and local Philadelphia grade school students to introduce them to the field of bioengineering, the life of graduate students, and hands-on scientific demonstrations. Due to COVID-19 restrictions, we adapted the traditional in-person BETA Day into a virtual event on Zoom. This year, we assembled kits containing the necessary materials for our chosen demonstrations and worked with iPraxis to coordinate their delivery to partner schools and their students. This enabled students to perform their demonstrations in a hands-on manner from their own homes; over 40 students were able to participate in extracting their own DNA and making biomaterials with safe household materials.

Michelle Johnson presents on her work in robotics

The day began with a fantastic lecture by Michelle Johnson, Associate Professor in Bioengineering and Physical Medicine and Rehabilitation, who introduced students to the field of rehabilitation robotics and shared her experience as a scientist. Students then learned about DNA and biomaterials through lectures mediated by the graduate students Dayo Adetu and Puneeth Guruprasad. After each lecture, students broke into breakout rooms with graduate student facilitators where they were able to get some hands-on scientific experience as they extracted DNA from their cheek cells and fabricated alginate hydrogels. Michael Sobrepera, a graduate student in Dr. Johnson’s lab, concluded the event by giving a lecture on the process of robotics development and discussed where the field is heading and some important considerations for the field.

Dayo Adetu, Bioengineering Master’s student and GABE President, teaches the students about Genetic Engineering

While yet another online event may seem unexciting, throughout the lectures students remained exceptionally engaged and raised fantastic questions ranging from the accessibility of low income communities to novel robotic therapeutic technologies to the bioethical questions robotic engineers will face as technologies advance. The impact of BETA day was evident as the high school students began to discuss the possible majors they would like to pursue for their bachelor’s degrees. Events like BETA Day give a glimpse into possible STEM fields and careers students can pursue.

Becoming a Bioengineer, Both at Home and On Campus

by Erica K. Brockmeier

The junior year BE-MAD lab series includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis (pictured here), and spectroscopy. (Image: Bioengineering Educational Lab)

While the majority of courses remained online this spring, a small number of lab-based undergraduate courses were able to resume limited in-person instruction. One course was BE 310, the second semester of the Bioengineering Modeling, Analysis, and Design lab sequence. Better known as BE-MAD, this junior-year bioengineering course was able to bring students back to the teaching lab safely this spring while adapting its curriculum to keep remote learners engaged with hands-on lab modules at home.

An Essential Step Towards Becoming a Bioengineer

After learning the basics of chemistry, physics, biology, and math during freshman year and studying bioengineering fundamentals throughout sophomore year, BE-MAD is designed to provide essential hands-on experience to bioengineering majors during their junior years. In BE-MAD, students integrate what they’ve learned so far in the classroom to addressing complex, real-world problems by breaking down the silos that exist across different STEM fields.

“Usually what we hear from students is that this BE 309/310 sequence is when they really feel like they are engineers,” says Brian Chow, one of the BE 310 instructors. “They can put what they learn in classes to work in some practical setting and applied context.”

BE-MAD is also an important course to prepare students for senior design and is designed to be a “safe space to fail,” allowing students to build confidence through trial and error within a supportive environment, explains Sevile G. Mannickarottu, director of the educational laboratories. “We’re trying to build skills needed for senior year as well as teaching students how to think critically about problems by pulling together the materials they’ve learned all in one place,” he says. “By senior year, we want them to, when presented with a problem, not be afraid.”

Adapting BE-MAD for Both Remote and Hybrid Instruction

Traditionally, the BE-MAD lab is taught in the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, the primary bioengineering teaching lab, and includes modules on dialysis, drug delivery, insect limb control, microfluidics, cell-cell communication, ECG analysis, and spectroscopy. In the fall, the first lab in the series (BE-309) pivoted to remote learning using video tutorials of lab experiments and providing real data to students for analysis.

This spring, with more aspects of on-campus life able to reopen, the Educational Laboratory staff and BE-MAD instructors developed protocols in collaboration with David Meaney, Penn Engineering senior associate dean and an instructor for BE 309, and Penn’s Environmental Health and Radiation Safety office to safely reopen the teaching lab and Bio-MakerSpace for both BE-310 and for bioengineering senior design students.

The BE-MAD lab was also recreated on Gather.Town, an online video chat platform where students can speak with group members or instructors. Student groups also had their own tables where they could meet virtually to work on data analysis and lab report writing.

To continue to meet the needs of remote students, BE 310 instructor Lukasz Bugaj says that the curriculum was adapted to be two parallel courses—one that could be done entirely at home and the other in-person. The challenge was to adjust the content so that it could be completed either in-person or virtually, and could be switched from in-person to virtual at a moment’s notice because of COVID precautions, all while maximizing the hands-on experience, says Bugaj. “That’s a real credit to the lab staff of Sevile and Michael Patterson, who put a lot of work into revamping this entire class.”

Read the full story in Penn Today.